sgoel30 commited on
Commit
3c395e0
·
verified ·
1 Parent(s): 533b030

Delete models

Browse files
Files changed (3) hide show
  1. models/diffusion.py +0 -312
  2. models/dit.py +0 -369
  3. models/ema.py +0 -97
models/diffusion.py DELETED
@@ -1,312 +0,0 @@
1
- import itertools
2
- import math
3
- import torch
4
- import numpy as np
5
- import pytorch_lightning as L
6
- import torchmetrics
7
- from dataclasses import dataclass
8
- import dit, ema
9
- import noise_schedule # Assuming this is part of the MDLM repository
10
-
11
- LOG2 = math.log(2)
12
-
13
- @dataclass
14
- class Loss:
15
- loss: torch.FloatTensor
16
- nlls: torch.FloatTensor
17
- token_mask: torch.FloatTensor
18
-
19
- class NLL(torchmetrics.MeanMetric):
20
- pass
21
-
22
- class BPD(NLL):
23
- def compute(self) -> torch.Tensor:
24
- """Computes the bits per dimension.
25
- Returns:
26
- bpd
27
- """
28
- return self.mean_value / self.weight / LOG2
29
-
30
- class Perplexity(NLL):
31
- def compute(self) -> torch.Tensor:
32
- """Computes the Perplexity.
33
- Returns:
34
- Perplexity
35
- """
36
- return torch.exp(self.mean_value / self.weight)
37
-
38
- # Based on MDLM repo
39
- class Diffusion(L.LightningModule):
40
- def __init__(self, config, latent_dim, tokenizer):
41
- super().__init__()
42
- self.config = config
43
- self.latent_dim = latent_dim
44
- self.tokenizer = tokenizer
45
-
46
- self.backbone = dit.DIT(self.config, vocab_size=self.latent_dim)
47
- self.T = self.config.T
48
- self.subs_masking = self.config.SUBS_MASKING
49
- self.antithetic_sampling = self.config.Training.ANTITHETIC_SAMPLING
50
- self.mask_index = self.tokenizer.mask_token_id
51
-
52
- self.softplus = torch.nn.Softplus()
53
- metrics = torchmetrics.MetricCollection({
54
- 'nll': NLL(),
55
- 'bpd': BPD(),
56
- 'ppl': Perplexity(),
57
- })
58
- metrics.set_dtype(torch.float64)
59
- self.train_metrics = metrics.clone(prefix='train/')
60
- self.valid_metrics = metrics.clone(prefix='val/')
61
- self.test_metrics = metrics.clone(prefix='test/')
62
-
63
- self.noise = noise_schedule.get_noise(self.config, dtype=self.dtype)
64
- self.lr = self.config.Optim.LR
65
- self.sampling_eps = self.config.Training.SAMPLING_EPS
66
- self.time_conditioning = self.config.TIME_CONDITIONING
67
- self.neg_infinity = -1000000.0
68
-
69
-
70
- ############ FORWARD DIFFUSION #########
71
- def subs_parameterization(self, logits, noised_latents):
72
- # log prob at the mask index = - infinity
73
- logits[:, :, self.mask_index] += self.neg_infinity
74
-
75
- # Normalize the logits such that x.exp() is
76
- # a probability distribution over vocab_size.
77
- logits = logits - torch.logsumexp(logits, dim=-1,
78
- keepdim=True)
79
-
80
- # Apply updates directly in the logits matrix.
81
- # For the logits of the unmasked tokens, set all values
82
- # to -infinity except for the indices corresponding to
83
- # the unmasked tokens.
84
- unmasked_indices = (noised_latents != self.mask_index)
85
- logits[unmasked_indices] = self.neg_infinity
86
- logits[unmasked_indices, noised_latents[unmasked_indices]] = 0
87
- return logits
88
-
89
- def forward(self, latents, sigma):
90
- latents = latents.long()
91
- with torch.cuda.amp.autocast(dtype=torch.float32):
92
- logits = self.backbone(latents, sigma)
93
- print(logits)
94
- optimized_logits = self.subs_parameterization(logits, latents)
95
- return optimized_logits
96
-
97
- def q_xt(self, latents, move_chance):
98
- """
99
- Computes the noisy sample xt.
100
- Args:
101
- x: int torch.Tensor with shape (batch_size, diffusion_model_input_length), input.
102
- move_chance: float torch.Tensor with shape (batch_size, 1).
103
- """
104
- latents = latents.mean(dim=1) # [bsz x seq_len x 1280] --> [bsz x 1280] as per args
105
- move_indices = torch.rand(* latents.shape, device=latents.device) < move_chance
106
- noised_latents = torch.where(move_indices, self.mask_index, latents)
107
- return noised_latents
108
-
109
- def sample_timestep(self, n, device):
110
- _eps_t = torch.rand(n, device=device)
111
- if self.antithetic_sampling:
112
- offset = torch.arange(n, device=device) / n
113
- _eps_t = (_eps_t / n + offset) % 1
114
- t = (1 - self.sampling_eps) * _eps_t + self.sampling_eps
115
- # if self.importance_sampling:
116
- # return self.noise.importance_sampling_transformation(t)
117
- return t
118
-
119
-
120
- def d3pm_loss(self, model_output, xt, x0, t):
121
- """Computes the D3PM loss between noisy latents and the original input at a given time step."""
122
- dt = 1 / self.T
123
-
124
- if torch.is_tensor(t):
125
- t = t[:, None]
126
- assert t.ndim == 2
127
- t = t.clamp(0., 1. - 1e-4)
128
- alpha_t = 1 - t + torch.zeros_like(xt)
129
- alpha_s = 1 - (t - dt) + torch.zeros_like(xt)
130
-
131
- x0 = x0.to(torch.int64)
132
- log_x_theta_at_x0 = torch.gather(model_output, -1, x0[:, :, None]).squeeze(-1)
133
- log_x_theta_at_m = model_output[:, :, self.mask_index]
134
- x_theta_at_m = log_x_theta_at_m.exp()
135
-
136
- term_1_coef = dt / t
137
- term_1_log_nr = torch.log(alpha_t * x_theta_at_m / t + 1)
138
- term_1_log_dr = log_x_theta_at_x0
139
-
140
- term_2_coef = 1 - dt / t
141
- term_2_log_nr = term_1_log_nr
142
- term_2_log_dr = torch.log(alpha_s * x_theta_at_m / (t - dt) + 1)
143
-
144
- L_vb_masked = (
145
- term_1_coef * (term_1_log_nr - term_1_log_dr)
146
- + term_2_coef * (term_2_log_nr - term_2_log_dr))
147
-
148
- L_vb = L_vb_masked * (xt == self.mask_index)
149
-
150
- return self.T * L_vb
151
-
152
- def forward_diffusion(self, latents):
153
- """Forward diffusion process, adds noise to the latents."""
154
-
155
- t = self.sample_timestep(latents.shape[0], latents.device)
156
- if self.T > 0:
157
- t = (t * self.T).to(torch.int)
158
- t = t / self.T
159
- # t \in {1/T, 2/T, ..., 1}
160
- t += (1 / self.T)
161
-
162
- sigma, dsigma = self.noise(t)
163
- unet_conditioning = sigma[:, None]
164
- move_chance = 1 - torch.exp(-sigma[:, None])
165
-
166
- noised_latents = self.q_xt(latents, move_chance)
167
- model_output = self.forward(noised_latents, unet_conditioning)
168
-
169
- if self.T > 0:
170
- diffusion_loss = self.d3pm_loss(model_output=model_output, xt=noised_latents, x0=latents, t=t)
171
- return diffusion_loss
172
- # SUBS parameterization, continuous time.
173
- else:
174
- log_p_theta = torch.gather(input=model_output, dim=-1, index=latents[:, :, None]).squeeze(-1)
175
- return - log_p_theta * (dsigma / torch.expm1(sigma))[:, None]
176
-
177
-
178
- ######### LOSS CALCULATIONS #########
179
- def maybe_sub_sample(self, x0, attention_mask):
180
- # seqlen = x0.shape[1]
181
- # print(seqlen)
182
- # if seqlen > self.config.model.length:
183
- # assert seqlen == 2 * self.config.model.length
184
- # # cropping is needed for text8-crop dataset
185
- # # try the same starting point for now
186
- # start = np.random.choice(self.config.model.length)
187
- # end = start + self.config.model.length
188
- # input_tokens = x0[:, start: end]
189
- # output_tokens = x0[:, start + 1: end + 1]
190
- # new_attention_mask = attention_mask[:, start: end]
191
-
192
- # # Helps with validation PPL, since the val
193
- # # examples will all start and end with BOS/EOS
194
- # input_tokens[:, 0] = self.tokenizer.bos_token_id
195
- # output_tokens[:, -1] = self.tokenizer.eos_token_id
196
-
197
- # elif self.parameterization == 'ar':
198
- # input_tokens = x0[:, :-1]
199
- # output_tokens = x0[:, 1:]
200
- # new_attention_mask = attention_mask[:, 1:]
201
- # else:
202
- input_tokens = x0
203
- output_tokens = None
204
- new_attention_mask = attention_mask
205
-
206
- return input_tokens, output_tokens, new_attention_mask
207
-
208
- def compute_loss(self, latents, attention_mask):
209
- """"Average of MLM losses to stabilize training"""
210
- (input_tokens, output_tokens, attention_mask) = self.maybe_sub_sample(latents, attention_mask)
211
- loss = self.forward_diffusion(input_tokens)
212
-
213
- nlls = loss * attention_mask
214
- count = attention_mask.sum()
215
- batch_nll = nlls.sum()
216
- token_nll = batch_nll / count
217
-
218
- return Loss(loss=token_nll, nlls=nlls, token_mask=attention_mask)
219
-
220
-
221
- ######### TRAINING #########
222
- def training_step(self, batch, batch_idx):
223
- latents, attention_mask = batch
224
- loss = self.compute_loss(latents, attention_mask)
225
- return loss
226
-
227
- def configure_optimizers(self):
228
- optimizer = torch.optim.Adam(self.parameters(), lr=self.lr)
229
- return optimizer
230
-
231
- def validation_step(self, batch):
232
- latents, attention_mask = batch
233
- loss = self.compute_loss(latents, attention_mask)
234
- return loss
235
-
236
-
237
- ######### GENERATION #########
238
- def sample_prior(self, *batch_dims):
239
- return self.mask_index * torch.ones(* batch_dims, dtype=torch.int64)
240
-
241
- def sample_categorical(categorical_probs):
242
- gumbel_norm = (1e-10 - (torch.rand_like(categorical_probs) + 1e-10).log())
243
- return (categorical_probs / gumbel_norm).argmax(dim=-1)
244
-
245
- def ddpm_caching_update(self, x, t, dt, p_x0=None):
246
- assert self.config.noise.type == 'loglinear'
247
- sigma_t, _ = self.noise(t)
248
- if t.ndim > 1:
249
- t = t.squeeze(-1)
250
- assert t.ndim == 1
251
- move_chance_t = t[:, None, None]
252
- move_chance_s = (t - dt)[:, None, None]
253
- assert move_chance_t.ndim == 3, move_chance_t.shape
254
- if p_x0 is None:
255
- p_x0 = self.forward(x, sigma_t).exp()
256
-
257
- assert move_chance_t.ndim == p_x0.ndim
258
- q_xs = p_x0 * (move_chance_t - move_chance_s)
259
- q_xs[:, :, self.mask_index] = move_chance_s[:, :, 0]
260
- _x = self.sample_categorical(q_xs)
261
-
262
- copy_flag = (x != self.mask_index).to(x.dtype)
263
- return p_x0, copy_flag * x + (1 - copy_flag) * _x
264
-
265
-
266
- @torch.no_grad()
267
- def sample_subs_guidance(self, n_samples, stride_length, num_strides, dt=0.001):
268
- ones = torch.ones(n_samples, dtype=self.dtype,device=self.device)
269
- num_steps = int(1 / dt)
270
- sampling_steps = 0
271
- intermediate_tokens = []
272
- target = None
273
-
274
- for _ in range(num_strides + 1):
275
- p_x0_cache = None
276
- x = self._sample_prior(n_samples,self.config.model.length).to(self.device)
277
-
278
- if target is not None:
279
- x[:, : -stride_length] = target
280
-
281
- for i in range(num_steps + 1):
282
- p_x0_cache, x_next = self.ddpm_caching_update(x=x, t=(1 - i * dt) * ones, dt=dt, p_x0=p_x0_cache)
283
- if (not torch.allclose(x_next, x) or self.time_conditioning):
284
- p_x0_cache = None
285
- sampling_steps += 1
286
- x = x_next
287
- x = self.forward(x, 0 * ones).argmax(dim=-1)
288
- intermediate_tokens.append(x[:, :stride_length].cpu().numpy())
289
- target = x[:, stride_length:]
290
-
291
- intermediate_tokens.append(target.cpu().numpy())
292
- intermediate_text_samples = []
293
- sequence_lengths = ((np.concatenate(intermediate_tokens, axis=1)[:, 1:]
294
- == self.tokenizer.eos_token_id).cumsum(-1) == 0).sum(-1)
295
-
296
- for i in range(2, len(intermediate_tokens) + 1):
297
- intermediate_text_samples.append(self.tokenizer.decode(np.concatenate(intermediate_tokens[:i], axis=1)))
298
-
299
- return (sampling_steps, intermediate_text_samples,
300
- sequence_lengths)
301
-
302
- def restore_model_and_semi_ar_sample(self, stride_length, num_strides, dt=0.001):
303
- """Generate samples from the model."""
304
- # Lightning auto-casting is not working in this method for some reason
305
- self.backbone.eval()
306
- self.noise.eval()
307
-
308
- (sampling_steps, samples, sequence_lengths) = self.sample_subs_guidance(n_samples=self.config.Loader.BATCH_SIZE,stride_length=stride_length,num_strides=num_strides,dt=dt)
309
-
310
- self.backbone.train()
311
- self.noise.train()
312
- return sampling_steps, samples, sequence_lengths
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
models/dit.py DELETED
@@ -1,369 +0,0 @@
1
- import math
2
- import typing
3
-
4
- import flash_attn
5
- import flash_attn.layers.rotary
6
- import huggingface_hub
7
- import omegaconf
8
- import torch
9
- import torch.nn as nn
10
- import torch.nn.functional as F
11
- from einops import rearrange
12
-
13
- # Flags required to enable jit fusion kernels
14
- torch._C._jit_set_profiling_mode(False)
15
- torch._C._jit_set_profiling_executor(False)
16
- torch._C._jit_override_can_fuse_on_cpu(True)
17
- torch._C._jit_override_can_fuse_on_gpu(True)
18
-
19
-
20
- def bias_dropout_add_scale(
21
- x: torch.Tensor,
22
- bias: typing.Optional[torch.Tensor],
23
- scale: torch.Tensor,
24
- residual: typing.Optional[torch.Tensor],
25
- prob: float,
26
- training: bool) -> torch.Tensor:
27
- if bias is not None:
28
- out = scale * F.dropout(x + bias, p=prob, training=training)
29
- else:
30
- out = scale * F.dropout(x, p=prob, training=training)
31
-
32
- if residual is not None:
33
- out = residual + out
34
- return out
35
-
36
-
37
- def get_bias_dropout_add_scale(training):
38
- def _bias_dropout_add(x, bias, scale, residual, prob):
39
- return bias_dropout_add_scale(
40
- x, bias, scale, residual, prob, training)
41
-
42
- return _bias_dropout_add
43
-
44
-
45
- # function overload
46
- def modulate(x: torch.Tensor,
47
- shift: torch.Tensor,
48
- scale: torch.Tensor) -> torch.Tensor:
49
- return x * (1 + scale) + shift
50
-
51
-
52
- @torch.jit.script
53
- def bias_dropout_add_scale_fused_train(
54
- x: torch.Tensor,
55
- bias: typing.Optional[torch.Tensor],
56
- scale: torch.Tensor,
57
- residual: typing.Optional[torch.Tensor],
58
- prob: float) -> torch.Tensor:
59
- return bias_dropout_add_scale(
60
- x, bias, scale, residual, prob, True)
61
-
62
-
63
- @torch.jit.script
64
- def bias_dropout_add_scale_fused_inference(
65
- x: torch.Tensor,
66
- bias: typing.Optional[torch.Tensor],
67
- scale: torch.Tensor,
68
- residual: typing.Optional[torch.Tensor],
69
- prob: float) -> torch.Tensor:
70
- return bias_dropout_add_scale(
71
- x, bias, scale, residual, prob, False)
72
-
73
-
74
- @torch.jit.script
75
- def modulate_fused(x: torch.Tensor,
76
- shift: torch.Tensor,
77
- scale: torch.Tensor) -> torch.Tensor:
78
- return modulate(x, shift, scale)
79
-
80
-
81
- class Rotary(torch.nn.Module):
82
- def __init__(self, dim, base=10_000):
83
- super().__init__()
84
- inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim))
85
- self.register_buffer('inv_freq', inv_freq)
86
- self.seq_len_cached = None
87
- self.cos_cached = None
88
- self.sin_cached = None
89
-
90
- def forward(self, x, seq_dim=1):
91
- seq_len = x.shape[seq_dim]
92
- if seq_len != self.seq_len_cached:
93
- self.seq_len_cached = seq_len
94
- t = torch.arange(x.shape[seq_dim], device=x.device).type_as(self.inv_freq)
95
- freqs = torch.einsum("i,j->ij", t, self.inv_freq.clone())
96
- emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
97
- # dims are: batch, seq_len, qkv, head, dim
98
- self.cos_cached = emb.cos()[None, :, None, None, :].repeat(1,1,3,1,1)
99
- self.sin_cached = emb.sin()[None, :, None, None, :].repeat(1,1,3,1,1)
100
- # This makes the transformation on v an identity.
101
- self.cos_cached[:,:,2,:,:].fill_(1.)
102
- self.sin_cached[:,:,2,:,:].fill_(0.)
103
-
104
- return self.cos_cached, self.sin_cached
105
-
106
-
107
- def rotate_half(x):
108
- x1, x2 = x[..., : x.shape[-1] // 2], x[..., x.shape[-1] // 2 :]
109
- return torch.cat((-x2, x1), dim=-1)
110
-
111
-
112
- def apply_rotary_pos_emb(qkv, cos, sin):
113
- cos = cos[0,:,0,0,:cos.shape[-1]//2]
114
- sin = sin[0,:,0,0,:sin.shape[-1]//2]
115
- return flash_attn.layers.rotary.apply_rotary_emb_qkv_(qkv, cos, sin)
116
-
117
-
118
- # function overload
119
- def modulate(x, shift, scale):
120
- return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
121
-
122
-
123
- #################################################################################
124
- # Layers #
125
- #################################################################################
126
- class LayerNorm(nn.Module):
127
- def __init__(self, dim):
128
- super().__init__()
129
- self.weight = nn.Parameter(torch.ones([dim]))
130
- self.dim = dim
131
- def forward(self, x):
132
- with torch.cuda.amp.autocast(enabled=False):
133
- x = F.layer_norm(x.float(), [self.dim])
134
- return x * self.weight[None,None,:]
135
-
136
-
137
- def residual_linear(x, W, x_skip, residual_scale):
138
- """x_skip + residual_scale * W @ x"""
139
- dim_out, dim_in = W.shape[0], W.shape[1]
140
- return torch.addmm(
141
- x_skip.view(-1, dim_out),
142
- x.view(-1, dim_in),
143
- W.T,
144
- alpha=residual_scale).view(*x.shape[:-1], dim_out)
145
-
146
-
147
- #################################################################################
148
- # Embedding Layers for Timesteps and Class Labels #
149
- #################################################################################
150
- class TimestepEmbedder(nn.Module):
151
- """
152
- Embeds scalar timesteps into vector representations.
153
- """
154
- def __init__(self, hidden_size, frequency_embedding_size=256):
155
- super().__init__()
156
- self.mlp = nn.Sequential(
157
- nn.Linear(frequency_embedding_size, hidden_size, bias=True),
158
- nn.SiLU(),
159
- nn.Linear(hidden_size, hidden_size, bias=True))
160
- self.frequency_embedding_size = frequency_embedding_size
161
-
162
- @staticmethod
163
- def timestep_embedding(t, dim, max_period=10000):
164
- """
165
- Create sinusoidal timestep embeddings.
166
- :param t: a 1-D Tensor of N indices, one per batch element.
167
- These may be fractional.
168
- :param dim: the dimension of the output.
169
- :param max_period: controls the minimum frequency of the embeddings.
170
- :return: an (N, D) Tensor of positional embeddings.
171
- """
172
- # https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
173
- half = dim // 2
174
- freqs = torch.exp(
175
- - math.log(max_period)
176
- * torch.arange(start=0, end=half, dtype=torch.float32)
177
- / half).to(device=t.device)
178
- args = t[:, None].float() * freqs[None]
179
- embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
180
- if dim % 2:
181
- embedding = torch.cat(
182
- [embedding,
183
- torch.zeros_like(embedding[:, :1])], dim=-1)
184
- return embedding
185
-
186
- def forward(self, t):
187
- t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
188
- t_emb = self.mlp(t_freq)
189
- return t_emb
190
-
191
-
192
- class LabelEmbedder(nn.Module):
193
- """Embeds class labels into vector representations.
194
-
195
- Also handles label dropout for classifier-free guidance.
196
- """
197
- def __init__(self, num_classes, cond_size):
198
- super().__init__()
199
- self.embedding_table = nn.Embedding(num_classes + 1, cond_size)
200
- self.num_classes = num_classes
201
-
202
- # TODO think of initializing with 0.02 std deviation like in original DiT paper
203
-
204
- def forward(self, labels):
205
- embeddings = self.embedding_table(labels)
206
- return embeddings
207
-
208
-
209
- #################################################################################
210
- # Core Model #
211
- #################################################################################
212
-
213
-
214
- class DDiTBlock(nn.Module):
215
- def __init__(self, dim, n_heads, cond_dim, mlp_ratio=4, dropout=0.1):
216
- super().__init__()
217
- self.n_heads = n_heads
218
-
219
- self.norm1 = LayerNorm(dim)
220
- self.attn_qkv = nn.Linear(dim, 3 * dim, bias=False)
221
- self.attn_out = nn.Linear(dim, dim, bias=False)
222
- self.dropout1 = nn.Dropout(dropout)
223
-
224
- self.norm2 = LayerNorm(dim)
225
- self.mlp = nn.Sequential(
226
- nn.Linear(dim, mlp_ratio * dim, bias=True),
227
- nn.GELU(approximate='tanh'),
228
- nn.Linear(mlp_ratio * dim, dim, bias=True))
229
- self.dropout2 = nn.Dropout(dropout)
230
- self.dropout = dropout
231
-
232
- self.adaLN_modulation = nn.Linear(cond_dim, 6 * dim, bias=True)
233
- self.adaLN_modulation.weight.data.zero_()
234
- self.adaLN_modulation.bias.data.zero_()
235
-
236
-
237
- def _get_bias_dropout_scale(self):
238
- if self.training:
239
- return bias_dropout_add_scale_fused_train
240
- else:
241
- return bias_dropout_add_scale_fused_inference
242
-
243
-
244
- def forward(self, x, rotary_cos_sin, c, seqlens=None):
245
- batch_size, seq_len = x.shape[0], x.shape[1]
246
-
247
- bias_dropout_scale_fn = self._get_bias_dropout_scale()
248
-
249
- (shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp) = self.adaLN_modulation(c)[:, None][0].chunk(6, dim=2)
250
-
251
- # attention operation
252
- x_skip = x
253
- x = modulate_fused(self.norm1(x), shift_msa, scale_msa)
254
-
255
- qkv = self.attn_qkv(x)
256
- qkv = rearrange(qkv,
257
- 'b s (three h d) -> b s three h d',
258
- three=3,
259
- h=self.n_heads)
260
- with torch.cuda.amp.autocast(enabled=False):
261
- cos, sin = rotary_cos_sin
262
- qkv = apply_rotary_pos_emb(
263
- qkv, cos.to(qkv.dtype), sin.to(qkv.dtype))
264
- qkv = rearrange(qkv, 'b s ... -> (b s) ...')
265
- if seqlens is None:
266
- cu_seqlens = torch.arange(
267
- 0, (batch_size + 1) * seq_len, step=seq_len,
268
- dtype=torch.int32, device=qkv.device)
269
- else:
270
- cu_seqlens = seqlens.cumsum(-1)
271
- x = flash_attn.flash_attn_interface.flash_attn_varlen_qkvpacked_func(
272
- qkv, cu_seqlens, seq_len, 0., causal=False)
273
-
274
- x = rearrange(x, '(b s) h d -> b s (h d)', b=batch_size)
275
-
276
- x = bias_dropout_scale_fn(self.attn_out(x),
277
- None,
278
- gate_msa,
279
- x_skip,
280
- self.dropout)
281
-
282
- # mlp operation
283
- x = bias_dropout_scale_fn(
284
- self.mlp(modulate_fused(
285
- self.norm2(x), shift_mlp, scale_mlp)),
286
- None, gate_mlp, x, self.dropout)
287
- return x
288
-
289
-
290
-
291
- class EmbeddingLayer(nn.Module):
292
- def __init__(self, dim, vocab_dim):
293
- super().__init__()
294
- self.embedding = nn.Parameter(torch.empty((vocab_dim, dim)))
295
- torch.nn.init.kaiming_uniform_(self.embedding, a=math.sqrt(5))
296
-
297
- def forward(self, x):
298
- return self.embedding[x]
299
-
300
-
301
- class DDitFinalLayer(nn.Module):
302
- def __init__(self, hidden_size, out_channels, cond_dim):
303
- super().__init__()
304
- self.norm_final = LayerNorm(hidden_size)
305
- self.linear = nn.Linear(hidden_size, out_channels)
306
- self.linear.weight.data.zero_()
307
- self.linear.bias.data.zero_()
308
-
309
- self.adaLN_modulation = nn.Linear(cond_dim,
310
- 2 * hidden_size,
311
- bias=True)
312
- self.adaLN_modulation.weight.data.zero_()
313
- self.adaLN_modulation.bias.data.zero_()
314
-
315
-
316
- def forward(self, x, c):
317
- shift, scale = self.adaLN_modulation(c)[:, None][0].chunk(2, dim=2)
318
- x = modulate_fused(self.norm_final(x), shift, scale)
319
- x = self.linear(x)
320
- return x
321
-
322
-
323
- class DIT(nn.Module, huggingface_hub.PyTorchModelHubMixin):
324
- def __init__(self, config, vocab_size: int):
325
- super().__init__()
326
- if type(config) == dict:
327
- config = omegaconf.OmegaConf.create(config)
328
-
329
- self.config = config
330
- self.vocab_size = vocab_size
331
-
332
- self.vocab_embed = EmbeddingLayer(config.model.hidden_size,
333
- vocab_size)
334
- self.sigma_map = TimestepEmbedder(config.model.cond_dim)
335
- self.rotary_emb = Rotary(
336
- config.model.hidden_size // config.model.n_heads)
337
-
338
- blocks = []
339
- for _ in range(config.model.n_blocks):
340
- blocks.append(DDiTBlock(config.model.hidden_size,
341
- config.model.n_heads,
342
- config.model.cond_dim,
343
- dropout=config.model.dropout))
344
- self.blocks = nn.ModuleList(blocks)
345
-
346
- self.output_layer = DDitFinalLayer(
347
- config.model.hidden_size,
348
- vocab_size,
349
- config.model.cond_dim)
350
- #self.scale_by_sigma = config.model.scale_by_sigma
351
-
352
- def _get_bias_dropout_scale(self):
353
- if self.training:
354
- return bias_dropout_add_scale_fused_train
355
- else:
356
- return bias_dropout_add_scale_fused_inference
357
-
358
- def forward(self, indices, sigma):
359
- x = self.vocab_embed(indices)
360
- c = F.silu(self.sigma_map(sigma))
361
-
362
- rotary_cos_sin = self.rotary_emb(x)
363
-
364
- with torch.cuda.amp.autocast(dtype=torch.bfloat16):
365
- for i in range(len(self.blocks)):
366
- x = self.blocks[i](x, rotary_cos_sin, c, seqlens=None)
367
- x = self.output_layer(x, c)
368
-
369
- return x
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
models/ema.py DELETED
@@ -1,97 +0,0 @@
1
- import torch
2
-
3
-
4
- class ExponentialMovingAverage:
5
- """
6
- Maintains (exponential) moving average of a set of parameters.
7
- """
8
-
9
- def __init__(self, parameters, decay, use_num_updates=True):
10
- """
11
- Args:
12
- parameters: Iterable of `torch.nn.Parameter`; usually the result of
13
- `model.parameters()`.
14
- decay: The exponential decay.
15
- use_num_updates: Whether to use number of updates when computing
16
- averages.
17
- """
18
- if decay < 0.0 or decay > 1.0:
19
- raise ValueError('Decay must be between 0 and 1')
20
- self.decay = decay
21
- self.num_updates = 0 if use_num_updates else None
22
- self.shadow_params = [p.clone().detach()
23
- for p in parameters if p.requires_grad]
24
- self.collected_params = []
25
-
26
- def move_shadow_params_to_device(self, device):
27
- self.shadow_params = [i.to(device) for i in self.shadow_params]
28
-
29
- def update(self, parameters):
30
- """
31
- Update currently maintained parameters.
32
-
33
- Call this every time the parameters are updated, such as the result of
34
- the `optimizer.step()` call.
35
-
36
- Args:
37
- parameters: Iterable of `torch.nn.Parameter`; usually the same set of
38
- parameters used to initialize this object.
39
- """
40
- decay = self.decay
41
- if self.num_updates is not None:
42
- self.num_updates += 1
43
- decay = min(decay, (1 + self.num_updates) /
44
- (10 + self.num_updates))
45
- one_minus_decay = 1.0 - decay
46
- with torch.no_grad():
47
- parameters = [p for p in parameters if p.requires_grad]
48
- for s_param, param in zip(self.shadow_params, parameters):
49
- s_param.sub_(one_minus_decay * (s_param - param))
50
-
51
- def copy_to(self, parameters):
52
- """
53
- Copy current parameters into given collection of parameters.
54
-
55
- Args:
56
- parameters: Iterable of `torch.nn.Parameter`; the parameters to be
57
- updated with the stored moving averages.
58
- """
59
- parameters = [p for p in parameters if p.requires_grad]
60
- for s_param, param in zip(self.shadow_params, parameters):
61
- if param.requires_grad:
62
- param.data.copy_(s_param.data)
63
-
64
- def store(self, parameters):
65
- """
66
- Save the current parameters for restoring later.
67
-
68
- Args:
69
- parameters: Iterable of `torch.nn.Parameter`; the parameters to be
70
- temporarily stored.
71
- """
72
- self.collected_params = [param.clone() for param in parameters]
73
-
74
- def restore(self, parameters):
75
- """
76
- Restore the parameters stored with the `store` method.
77
- Useful to validate the model with EMA parameters without affecting the
78
- original optimization process. Store the parameters before the
79
- `copy_to` method. After validation (or model saving), use this to
80
- restore the former parameters.
81
-
82
- Args:
83
- parameters: Iterable of `torch.nn.Parameter`; the parameters to be
84
- updated with the stored parameters.
85
- """
86
- for c_param, param in zip(self.collected_params, parameters):
87
- param.data.copy_(c_param.data)
88
-
89
- def state_dict(self):
90
- return dict(decay=self.decay,
91
- num_updates=self.num_updates,
92
- shadow_params=self.shadow_params)
93
-
94
- def load_state_dict(self, state_dict):
95
- self.decay = state_dict['decay']
96
- self.num_updates = state_dict['num_updates']
97
- self.shadow_params = state_dict['shadow_params']