pranamanam
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -17,174 +17,7 @@ extra_gated_fields:
|
|
17 |
I agree to use this model for non-commercial use ONLY: checkbox
|
18 |
---
|
19 |
|
20 |
-
# Masked Discrete
|
21 |
|
22 |
-
Here, we implement a masked discrete
|
23 |
|
24 |
-
## Directory Structure
|
25 |
-
|
26 |
-
```
|
27 |
-
project/
|
28 |
-
β
|
29 |
-
βββ configs/
|
30 |
-
β βββ config.py
|
31 |
-
β
|
32 |
-
βββ data/
|
33 |
-
β βββ train.csv
|
34 |
-
β βββ val.csv
|
35 |
-
β βββ test.csv
|
36 |
-
β
|
37 |
-
βββ models/
|
38 |
-
β βββ diffusion.py
|
39 |
-
β
|
40 |
-
βββ scripts/
|
41 |
-
β βββ train.py
|
42 |
-
β βββ test.py
|
43 |
-
β βββ generate.py
|
44 |
-
β
|
45 |
-
βββ utils/
|
46 |
-
β βββ data_loader.py
|
47 |
-
β βββ esm_utils.py
|
48 |
-
β
|
49 |
-
βββ checkpoints/
|
50 |
-
β βββ example.ckpt # Placeholder for checkpoints
|
51 |
-
β
|
52 |
-
βββ requirements.txt
|
53 |
-
β
|
54 |
-
βββ README.md
|
55 |
-
```
|
56 |
-
|
57 |
-
## Setup and Requirements
|
58 |
-
|
59 |
-
### Prerequisites
|
60 |
-
|
61 |
-
- Python 3.8+
|
62 |
-
- CUDA (for GPU support)
|
63 |
-
|
64 |
-
### Install Dependencies
|
65 |
-
|
66 |
-
1. Create and activate a virtual environment:
|
67 |
-
```bash
|
68 |
-
python -m venv venv
|
69 |
-
source venv/bin/activate # On Windows use `venv\Scripts\activate`
|
70 |
-
```
|
71 |
-
|
72 |
-
2. Install the required packages:
|
73 |
-
```bash
|
74 |
-
pip install -r requirements.txt
|
75 |
-
```
|
76 |
-
|
77 |
-
### Prepare Data
|
78 |
-
|
79 |
-
Place your data files (`train.csv`, `val.csv`, `test.csv`) in the `data/` directory. Ensure that these CSV files contain a column named `sequence` with the protein sequences.
|
80 |
-
|
81 |
-
## Configuration
|
82 |
-
|
83 |
-
Modify the `configs/config.py` file to set your hyperparameters, model configurations, and data paths. Here is an example configuration:
|
84 |
-
|
85 |
-
```python
|
86 |
-
class Config:
|
87 |
-
model_name = "facebook/esm2_t33_650M_UR50D"
|
88 |
-
latent_dim = 1280 # Adjust based on ESM-2 latent dimension
|
89 |
-
optim = {"lr": 1e-4}
|
90 |
-
training = {
|
91 |
-
"ema": 0.999,
|
92 |
-
"epochs": 10,
|
93 |
-
"batch_size": 32,
|
94 |
-
"gpus": 8,
|
95 |
-
"precision": 16, # Mixed precision training
|
96 |
-
"accumulate_grad_batches": 2, # Gradient accumulation
|
97 |
-
"save_dir": "./checkpoints/",
|
98 |
-
}
|
99 |
-
data_path = "./data/"
|
100 |
-
T = 1000 # Number of diffusion steps
|
101 |
-
subs_masking = False
|
102 |
-
```
|
103 |
-
|
104 |
-
## Mathematical Formulations
|
105 |
-
|
106 |
-
### Forward Diffusion
|
107 |
-
|
108 |
-
The forward diffusion process adds noise to the latent representations of the protein sequences:
|
109 |
-
\[ ext{noisy\_latents} = ext{latents} + \sigma \cdot \epsilon \]
|
110 |
-
where:
|
111 |
-
- \(\sigma\) is the noise level.
|
112 |
-
- \(\epsilon \sim \mathcal{N}(0, 1)\) is Gaussian noise.
|
113 |
-
|
114 |
-
### Reverse Diffusion
|
115 |
-
|
116 |
-
The reverse diffusion process denoises the latent representations:
|
117 |
-
\[ ext{denoised\_latents} = ext{backbone}( ext{noisy\_latents}, \sigma) \]
|
118 |
-
where the backbone model predicts the denoised latent representations.
|
119 |
-
|
120 |
-
### Loss Function
|
121 |
-
|
122 |
-
The loss function used to train the model is the Mean Squared Error (MSE) between the denoised latents and the original latents:
|
123 |
-
\[ \mathcal{L} = ext{MSE}( ext{denoised\_latents}, ext{latents}) \]
|
124 |
-
|
125 |
-
## Training
|
126 |
-
|
127 |
-
To train the model, run the `train.py` script:
|
128 |
-
|
129 |
-
```bash
|
130 |
-
python scripts/train.py
|
131 |
-
```
|
132 |
-
|
133 |
-
This script will:
|
134 |
-
- Load the ESM-2-650M model and tokenizer from Hugging Face.
|
135 |
-
- Prepare the data loaders for training and validation datasets.
|
136 |
-
- Initialize the latent diffusion model.
|
137 |
-
- Train the model using the specified configurations.
|
138 |
-
|
139 |
-
## Testing
|
140 |
-
|
141 |
-
To test the model, run the `test.py` script:
|
142 |
-
|
143 |
-
```bash
|
144 |
-
python scripts/test.py
|
145 |
-
```
|
146 |
-
|
147 |
-
This script will:
|
148 |
-
- Load the trained model from the checkpoint.
|
149 |
-
- Prepare the data loader for the test dataset.
|
150 |
-
- Evaluate the model on the test dataset.
|
151 |
-
|
152 |
-
## Generating Protein Sequences
|
153 |
-
|
154 |
-
To generate protein sequences, use the `generate.py` script. This script supports three strategies:
|
155 |
-
|
156 |
-
1. **Generating a Scaffold to Connect Multiple Peptides**:
|
157 |
-
```bash
|
158 |
-
python scripts/generate.py scaffold <peptide1> <peptide2> ... <final_length>
|
159 |
-
```
|
160 |
-
Example:
|
161 |
-
```bash
|
162 |
-
python scripts/generate.py scaffold MKTAYIAKQRQ GLIEVQ 30
|
163 |
-
```
|
164 |
-
|
165 |
-
2. **Filling in Specified Regions in a Given Protein Sequence**:
|
166 |
-
```bash
|
167 |
-
python scripts/generate.py fill <sequence_with_X>
|
168 |
-
```
|
169 |
-
Example:
|
170 |
-
```bash
|
171 |
-
python scripts/generate.py fill MKTAYIAKXXXXXXXLEERLGLIEVQ
|
172 |
-
```
|
173 |
-
|
174 |
-
3. **Purely De Novo Generation of a Protein Sequence**:
|
175 |
-
```bash
|
176 |
-
python scripts/generate.py de_novo <sequence_length>
|
177 |
-
```
|
178 |
-
Example:
|
179 |
-
```bash
|
180 |
-
python scripts/generate.py de_novo 50
|
181 |
-
```
|
182 |
-
|
183 |
-
## Notes
|
184 |
-
|
185 |
-
- Ensure you have a compatible CUDA environment if you are training on GPUs.
|
186 |
-
- Modify the paths and configurations in `configs/config.py` as needed to match your setup.
|
187 |
-
|
188 |
-
## Acknowledgements
|
189 |
-
|
190 |
-
This implementation is based on the MDLM framework and uses the ESM-2-650M model.
|
|
|
17 |
I agree to use this model for non-commercial use ONLY: checkbox
|
18 |
---
|
19 |
|
20 |
+
# Masked Discrete Diffusion Model for Protein Sequence Generation
|
21 |
|
22 |
+
Here, we implement a masked discrete diffusion model for generating protein sequences. The model leverages the MDLM framework and ESM-2-650M for latent space representation and diffusion.
|
23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|