MeMDLM / benchmarks /DeepLoc /membrane_localization_predictor.py
sgoel30's picture
Benchmarking pipeline. Predicts the specific type of the generated membrane protein and the subcellular localization of the generated protein
9b7a4b0 verified
raw
history blame
5.16 kB
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, Dataset
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, roc_auc_score
from tqdm import tqdm
from datetime import datetime
import pandas as pd
import numpy as np
import pickle
import os
# Hyperparameters dictionary
path = "/home/a03-sgoel/MDpLM"
hyperparams = {
"batch_size": 1,
"learning_rate": 4e-5,
"num_epochs": 5,
"max_length": 2000,
"train_data": path + "/benchmarks/membrane_type_train.csv",
"test_data" : path + "/benchmarks/membrane_type_test.csv",
"val_data": "", # none
"embeddings_pkl": "" # Need to generate ESM embeddings
}
# Dataset class can load pickle file
class LocalizationDataset(Dataset):
def __init__(self, csv_file, embeddings_pkl, max_length=2000):
self.data = pd.read_csv(csv_file)
self.max_length = max_length
# Map sequences to embeddings
with open(embeddings_pkl, 'rb') as f:
self.embeddings_dict = pickle.load(f)
self.data['embedding'] = self.data['Sequence'].map(self.embeddings_dict)
# Ensure sequences and embeddings are of the same length
assert len(self.data) == len(self.data['embedding']), "CSV data and embeddings length mismatch"
# Create multi-class label list
self.data['label'] = self.data.iloc[:, 2:7].value.tolist()
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
embeddings = torch.tensor(self.data['embedding'][idx], dtype=torch.float)
labels = torch.tensor(self.data['label'][idx], dtype=torch.long)
return embeddings, labels
# Multi-class localization predictor
class LocalizationPredictor(nn.Module):
def __init__(self, input_dim, num_classes):
super(LocalizationPredictor, self).__init__()
self.classifier = nn.Linear(input_dim, num_classes) # 1280 x 4
def forward(self, embeddings):
avg_embedding = torch.mean(embeddings, dim=0) # Average embedding dimension: 1280
logits = self.classifier(avg_embedding)
return logits # pass logits of dimension 1x4 (4-class distribution) to CE loss
# Training function
def train(model, dataloader, optimizer, criterion, device):
model.train()
total_loss = 0
for embeddings, labels in tqdm(dataloader):
embeddings, labels = embeddings.to(device), labels.to(device)
optimizer.zero_grad()
outputs = model(embeddings)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
total_loss += loss.item()
return total_loss / len(dataloader)
# Evaluation function
def evaluate(model, dataloader, device):
model.eval()
preds, true_labels = [], []
with torch.no_grad():
for embeddings, labels in tqdm(dataloader):
embeddings, labels = embeddings.to(device), labels.to(device)
outputs = model(embeddings)
preds.append(outputs.cpu().numpy())
true_labels.append(labels.cpu().numpy())
return preds, true_labels
# Metrics calculation
def calculate_metrics(preds, labels, threshold=0.5):
flat_binary_preds, flat_labels = [], []
for pred, label in zip(preds, labels):
flat_binary_preds.extend((pred > threshold).astype(int).flatten())
flat_labels.extend(label.flatten())
flat_binary_preds = np.array(flat_binary_preds)
flat_labels = np.array(flat_labels)
accuracy = accuracy_score(flat_labels, flat_binary_preds)
precision = precision_score(flat_labels, flat_binary_preds, average='macro')
recall = recall_score(flat_labels, flat_binary_preds, average='macro')
f1 = f1_score(flat_labels, flat_binary_preds, average='macro')
return accuracy, precision, recall, f1
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
train_dataset = LocalizationDataset(hyperparams["train_data"], hyperparams["embeddings_pkl"], max_length=hyperparams["max_length"])
test_dataset = LocalizationDataset(hyperparams["test_data"], hyperparams["embeddings_pkl"], max_length=hyperparams["max_length"])
train_dataloader = DataLoader(train_dataset, batch_size=hyperparams["batch_size"], shuffle=True)
test_dataloader = DataLoader(test_dataset, batch_size=hyperparams["batch_size"], shuffle=False)
model = LocalizationPredictor(input_dim=1280, num_classes=4).to(device)
optimizer = optim.Adam(model.parameters(), lr=hyperparams["learning_rate"])
criterion = nn.CrossEntropyLoss()
# Train the model
for epoch in range(hyperparams["num_epochs"]):
train_loss = train(model, train_dataloader, optimizer, criterion, device)
print(f"EPOCH {epoch+1}/{hyperparams['num_epochs']}")
print(f"TRAIN LOSS: {train_loss:.4f}")
print("\n")
# Evaluate model on test dataset
print("Test set")
test_preds, test_labels = evaluate(model, test_dataloader, device)
test_metrics = calculate_metrics(test_preds, test_labels)
print("TEST METRICS:")
print(f"Accuracy: {test_metrics[0]:.4f}")
print(f"Precision: {test_metrics[1]:.4f}")
print(f"Recall: {test_metrics[2]:.4f}")
print(f"F1 Score: {test_metrics[3]:.4f}")