File size: 5,164 Bytes
9b7a4b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, Dataset
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, roc_auc_score

from tqdm import tqdm
from datetime import datetime
import pandas as pd
import numpy as np
import pickle
import os

# Hyperparameters dictionary
path = "/home/a03-sgoel/MDpLM"

hyperparams = {
    "batch_size": 1,
    "learning_rate": 4e-5,
    "num_epochs": 5,
    "max_length": 2000,
    "train_data": path + "/benchmarks/membrane_type_train.csv",
    "test_data" : path + "/benchmarks/membrane_type_test.csv",
    "val_data": "", # none
    "embeddings_pkl": "" # Need to generate ESM embeddings
}

# Dataset class can load pickle file
class LocalizationDataset(Dataset):
    def __init__(self, csv_file, embeddings_pkl, max_length=2000):
        self.data = pd.read_csv(csv_file)
        self.max_length = max_length

        # Map sequences to embeddings
        with open(embeddings_pkl, 'rb') as f:
            self.embeddings_dict = pickle.load(f)
        self.data['embedding'] = self.data['Sequence'].map(self.embeddings_dict)

        # Ensure sequences and embeddings are of the same length
        assert len(self.data) == len(self.data['embedding']), "CSV data and embeddings length mismatch"

        # Create multi-class label list
        self.data['label'] = self.data.iloc[:, 2:7].value.tolist()

    def __len__(self):
        return len(self.data)

    def __getitem__(self, idx):
        embeddings = torch.tensor(self.data['embedding'][idx], dtype=torch.float)
        labels = torch.tensor(self.data['label'][idx], dtype=torch.long)

        return embeddings, labels

# Multi-class localization predictor
class LocalizationPredictor(nn.Module):
    def __init__(self, input_dim, num_classes):
        super(LocalizationPredictor, self).__init__()
        self.classifier = nn.Linear(input_dim, num_classes) # 1280 x 4

    def forward(self, embeddings):
        avg_embedding = torch.mean(embeddings, dim=0) # Average embedding dimension: 1280
        logits = self.classifier(avg_embedding)
        return logits # pass logits of dimension 1x4 (4-class distribution) to CE loss

# Training function
def train(model, dataloader, optimizer, criterion, device):
    model.train()
    total_loss = 0
    for embeddings, labels in tqdm(dataloader):
        embeddings, labels = embeddings.to(device), labels.to(device)
        optimizer.zero_grad()
        outputs = model(embeddings)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()
        total_loss += loss.item()
    return total_loss / len(dataloader)

# Evaluation function
def evaluate(model, dataloader, device):
    model.eval()
    preds, true_labels = [], []
    with torch.no_grad():
        for embeddings, labels in tqdm(dataloader):
            embeddings, labels = embeddings.to(device), labels.to(device)
            outputs = model(embeddings)
            preds.append(outputs.cpu().numpy())
            true_labels.append(labels.cpu().numpy())
    return preds, true_labels

# Metrics calculation
def calculate_metrics(preds, labels, threshold=0.5):
    flat_binary_preds, flat_labels = [], []

    for pred, label in zip(preds, labels):
        flat_binary_preds.extend((pred > threshold).astype(int).flatten())
        flat_labels.extend(label.flatten())

    flat_binary_preds = np.array(flat_binary_preds)
    flat_labels = np.array(flat_labels)

    accuracy = accuracy_score(flat_labels, flat_binary_preds)
    precision = precision_score(flat_labels, flat_binary_preds, average='macro')
    recall = recall_score(flat_labels, flat_binary_preds, average='macro')
    f1 = f1_score(flat_labels, flat_binary_preds, average='macro')

    return accuracy, precision, recall, f1


device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

train_dataset = LocalizationDataset(hyperparams["train_data"], hyperparams["embeddings_pkl"], max_length=hyperparams["max_length"])
test_dataset = LocalizationDataset(hyperparams["test_data"], hyperparams["embeddings_pkl"], max_length=hyperparams["max_length"])

train_dataloader = DataLoader(train_dataset, batch_size=hyperparams["batch_size"], shuffle=True)
test_dataloader = DataLoader(test_dataset, batch_size=hyperparams["batch_size"], shuffle=False)

model = LocalizationPredictor(input_dim=1280, num_classes=4).to(device)
optimizer = optim.Adam(model.parameters(), lr=hyperparams["learning_rate"])
criterion = nn.CrossEntropyLoss()

# Train the model
for epoch in range(hyperparams["num_epochs"]):
    train_loss = train(model, train_dataloader, optimizer, criterion, device)
    print(f"EPOCH {epoch+1}/{hyperparams['num_epochs']}")
    print(f"TRAIN LOSS: {train_loss:.4f}")
    print("\n")

# Evaluate model on test dataset
print("Test set")
test_preds, test_labels = evaluate(model, test_dataloader, device)
test_metrics = calculate_metrics(test_preds, test_labels)
print("TEST METRICS:")
print(f"Accuracy: {test_metrics[0]:.4f}")
print(f"Precision: {test_metrics[1]:.4f}")
print(f"Recall: {test_metrics[2]:.4f}")
print(f"F1 Score: {test_metrics[3]:.4f}")