MeMDLM / scripts /diffusion.py
sgoel30's picture
Upload 4 files
fedcb95 verified
raw
history blame
10 kB
import itertools
import math
import torch
import torch.nn as nn
import numpy as np
import pytorch_lightning as L
import torchmetrics
from dataclasses import dataclass
from esm_utils import load_esm2_model
from transformers import AutoModelForMaskedLM, AutoModel, AutoTokenizer
import dit, ema
import sys
import config
import wandb
import noise_schedule # Assuming this is part of the MDLM repository
wandb_key = "2b76a2fa2c1cdfddc5f443602c17b011fefb0a8f"
wandb.login(key=wandb_key)
wandb.init(project=config.Wandb.PROJECT, group=config.Wandb.GROUP)
LOG2 = math.log(2)
# Goal is to build an MDLM head using pre-existing ESM LM head
# Wrap the ESM model to obtain logits and ignore sigma to work with MDLM codebase
class WrapESM(nn.Module):
def __init__(self, esm_model_path=config.MODEL_NAME):
super(WrapESM, self).__init__()
self.model = AutoModelForMaskedLM.from_pretrained(esm_model_path)
self.tokenizer = AutoTokenizer.from_pretrained(esm_model_path)
# def __getattr__(self, name):
# return getattr(self.model, name)
def __call__(self, *args, **kwargs):
return self.model(*args, **kwargs)
def freeze_model(self):
# Disable parameter updates for all layers
for param in self.model.parameters():
param.requires_grad = False
def unfreeze_n_layers(self):
# Count number of encoder layers
model_layers = len(self.model.esm.encoder.layer)
# Enable parameter updates for the last 3 encoder layers
for i, layer in enumerate(self.model.esm.encoder.layer):
if i >= model_layers-config.ESM_LAYERS:
for module in layer.attention.self.key.modules():
for param in module.parameters():
param.requires_grad = True
for module in layer.attention.self.query.modules():
for param in module.parameters():
param.requires_grad = True
for module in layer.attention.self.value.modules():
for param in module.parameters():
param.requires_grad = True
def forward(self, sigma, **inputs):
return self.model(**inputs)
def save_model(self, save_dir):
self.model.save_pretrained(save_dir)
self.tokenizer.save_pretrained(save_dir)
def load_model(self, load_dir):
self.model = AutoModel.from_pretrained(load_dir)
self.tokenizer = AutoTokenizer.from_pretrained(load_dir)
@dataclass
class Loss:
loss: torch.FloatTensor
nlls: torch.FloatTensor
token_mask: torch.FloatTensor
class NLL(torchmetrics.MeanMetric):
pass
class BPD(NLL):
def compute(self) -> torch.Tensor:
"""Computes the bits per dimension.
Returns:
bpd
"""
return self.mean_value / self.weight / LOG2
class Perplexity(NLL):
def compute(self) -> torch.Tensor:
"""Computes the Perplexity.
Returns:
Perplexity
"""
return torch.exp(self.mean_value / self.weight)
# Based on MDLM repo
class Diffusion(L.LightningModule):
def __init__(self, config, tokenizer):
super().__init__()
self.config = config
self.tokenizer = tokenizer
self.softplus = torch.nn.Softplus()
metrics = torchmetrics.MetricCollection({
'nll': NLL(),
'bpd': BPD(),
'ppl': Perplexity(),
})
metrics.set_dtype(torch.float64)
self.train_metrics = metrics.clone(prefix='train/')
self.valid_metrics = metrics.clone(prefix='val/')
self.test_metrics = metrics.clone(prefix='test/')
self.T = self.config.T
self.lr = self.config.Optim.LR
self.backbone = WrapESM(self.config.MODEL_NAME)
self.noise = noise_schedule.get_noise(self.config, dtype=self.dtype)
self.time_conditioning = self.config.TIME_CONDITIONING
self.subs_masking = self.config.SUBS_MASKING
self.mask_index = self.tokenizer.mask_token_id
self.antithetic_sampling = self.config.Training.ANTITHETIC_SAMPLING
self.sampling_eps = self.config.Training.SAMPLING_EPS
self.neg_infinity = -1000000.0
############ FORWARD DIFFUSION #########
def compute_loss(self, latents, attention_mask, val):
""""Average of MLM losses to stabilize training"""
self.noise.eval() if val else self.noise.train()
loss = self.forward_diffusion(latents)
nlls = loss * attention_mask
count = attention_mask.sum()
batch_nll = nlls.sum()
token_nll = batch_nll / count
return Loss(loss=token_nll, nlls=nlls, token_mask=attention_mask)
def forward_diffusion(self, x0):
"""Forward diffusion process, adds noise to the latents."""
t = self.sample_timestep(x0.shape[0], x0.device)
sigma, dsigma = self.noise(t)
unet_conditioning = sigma[:, None]
move_chance = 1 - torch.exp(-sigma[:, None])
xt = self.q_xt(x0, move_chance)
model_output = self.forward(xt, unet_conditioning)
# SUBS parameterization, continuous time.
log_p_theta = torch.gather(input=model_output, dim=-1, index=x0[:, :, None]).squeeze(-1)
scale = (dsigma / torch.expm1(sigma))[:, None]
loss = - log_p_theta * scale
return loss
def sample_timestep(self, n, device):
_eps_t = torch.rand(n, device=device)
if self.antithetic_sampling:
offset = torch.arange(n, device=device) / n
_eps_t = (_eps_t / n + offset) % 1
t = (1 - self.sampling_eps) * _eps_t + self.sampling_eps
return t
def q_xt(self, x, move_chance):
"""
Computes the noisy sample xt.
Args:
x: int torch.Tensor with shape (batch_size, diffusion_model_input_length), input.
move_chance: float torch.Tensor with shape (batch_size, 1).
"""
move_indices = torch.rand(* x.shape, device=x.device) < move_chance
xt = torch.where(move_indices, self.mask_index, x) # Use variable masking rate to mask tokens (introduce noise)
return xt
def forward(self, latents, sigma):
esm_outputs = self.backbone(latents, sigma)
optimized_logits = self.subs_parameterization(esm_outputs.logits, latents)
return optimized_logits
def subs_parameterization(self, logits, xt):
logits[:, :, self.mask_index] += self.neg_infinity
logits = logits - torch.logsumexp(logits, dim=-1, keepdim=True)
unmasked_indices = (xt != self.mask_index)
logits[unmasked_indices] = self.neg_infinity
logits[unmasked_indices, xt[unmasked_indices]] = 0
return logits
######### GENERATION #########
def sample_prior(self, *batch_dims):
return self.mask_index * torch.ones(* batch_dims, dtype=torch.int64)
def sample_categorical(categorical_probs):
gumbel_norm = (1e-10 - (torch.rand_like(categorical_probs) + 1e-10).log())
return (categorical_probs / gumbel_norm).argmax(dim=-1)
def ddpm_caching_update(self, x, t, dt, p_x0=None):
sigma_t, _ = self.noise(t)
if t.ndim > 1:
t = t.squeeze(-1)
assert t.ndim == 1
move_chance_t = t[:, None, None]
move_chance_s = (t - dt)[:, None, None]
assert move_chance_t.ndim == 3, move_chance_t.shape
if p_x0 is None:
p_x0 = self.forward(x, sigma_t).exp()
assert move_chance_t.ndim == p_x0.ndim
q_xs = p_x0 * (move_chance_t - move_chance_s)
q_xs[:, :, self.mask_index] = move_chance_s[:, :, 0]
_x = self.sample_categorical(q_xs)
copy_flag = (x != self.mask_index).to(x.dtype)
return p_x0, copy_flag * x + (1 - copy_flag) * _x
@torch.no_grad()
def sample_subs_guidance(self, n_samples, stride_length, num_strides, dt=0.001):
ones = torch.ones(n_samples, dtype=self.dtype,device=self.device)
num_steps = int(1 / dt)
sampling_steps = 0
intermediate_tokens = []
target = None
for _ in range(num_strides + 1):
p_x0_cache = None
x = self.sample_prior(n_samples,self.config.model.length).to(self.device)
if target is not None:
x[:, : -stride_length] = target
for i in range(num_steps + 1):
p_x0_cache, x_next = self.ddpm_caching_update(x=x, t=(1 - i * dt) * ones, dt=dt, p_x0=p_x0_cache)
if (not torch.allclose(x_next, x) or self.time_conditioning):
p_x0_cache = None
sampling_steps += 1
x = x_next
x = self.forward(x, 0 * ones).argmax(dim=-1)
intermediate_tokens.append(x[:, :stride_length].cpu().numpy())
target = x[:, stride_length:]
intermediate_tokens.append(target.cpu().numpy())
intermediate_text_samples = []
sequence_lengths = ((np.concatenate(intermediate_tokens, axis=1)[:, 1:]
== self.tokenizer.eos_token_id).cumsum(-1) == 0).sum(-1)
for i in range(2, len(intermediate_tokens) + 1):
intermediate_text_samples.append(self.tokenizer.decode(np.concatenate(intermediate_tokens[:i], axis=1)))
return (sampling_steps, intermediate_text_samples,
sequence_lengths)
def restore_model_and_semi_ar_sample(self, stride_length, num_strides, dt=0.001):
"""Generate samples from the model."""
# Lightning auto-casting is not working in this method for some reason
self.backbone.eval()
self.noise.eval()
(sampling_steps, samples, sequence_lengths) = self.sample_subs_guidance(n_samples=self.config.Loader.BATCH_SIZE,stride_length=stride_length,num_strides=num_strides,dt=dt)
self.backbone.train()
self.noise.train()
return sampling_steps, samples, sequence_lengths