Upload 4 files
Browse files- scripts/diffusion.py +264 -0
- scripts/generate.py +129 -0
- scripts/noise_schedule.py +153 -0
- scripts/train_pytorch.py +165 -0
scripts/diffusion.py
ADDED
@@ -0,0 +1,264 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import itertools
|
2 |
+
import math
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import numpy as np
|
6 |
+
import pytorch_lightning as L
|
7 |
+
import torchmetrics
|
8 |
+
from dataclasses import dataclass
|
9 |
+
from esm_utils import load_esm2_model
|
10 |
+
from transformers import AutoModelForMaskedLM, AutoModel, AutoTokenizer
|
11 |
+
import dit, ema
|
12 |
+
import sys
|
13 |
+
import config
|
14 |
+
import wandb
|
15 |
+
import noise_schedule # Assuming this is part of the MDLM repository
|
16 |
+
|
17 |
+
wandb_key = "2b76a2fa2c1cdfddc5f443602c17b011fefb0a8f"
|
18 |
+
wandb.login(key=wandb_key)
|
19 |
+
wandb.init(project=config.Wandb.PROJECT, group=config.Wandb.GROUP)
|
20 |
+
|
21 |
+
LOG2 = math.log(2)
|
22 |
+
|
23 |
+
# Goal is to build an MDLM head using pre-existing ESM LM head
|
24 |
+
# Wrap the ESM model to obtain logits and ignore sigma to work with MDLM codebase
|
25 |
+
class WrapESM(nn.Module):
|
26 |
+
def __init__(self, esm_model_path=config.MODEL_NAME):
|
27 |
+
super(WrapESM, self).__init__()
|
28 |
+
self.model = AutoModelForMaskedLM.from_pretrained(esm_model_path)
|
29 |
+
self.tokenizer = AutoTokenizer.from_pretrained(esm_model_path)
|
30 |
+
|
31 |
+
# def __getattr__(self, name):
|
32 |
+
# return getattr(self.model, name)
|
33 |
+
|
34 |
+
def __call__(self, *args, **kwargs):
|
35 |
+
return self.model(*args, **kwargs)
|
36 |
+
|
37 |
+
def freeze_model(self):
|
38 |
+
# Disable parameter updates for all layers
|
39 |
+
for param in self.model.parameters():
|
40 |
+
param.requires_grad = False
|
41 |
+
|
42 |
+
def unfreeze_n_layers(self):
|
43 |
+
# Count number of encoder layers
|
44 |
+
model_layers = len(self.model.esm.encoder.layer)
|
45 |
+
|
46 |
+
# Enable parameter updates for the last 3 encoder layers
|
47 |
+
for i, layer in enumerate(self.model.esm.encoder.layer):
|
48 |
+
if i >= model_layers-config.ESM_LAYERS:
|
49 |
+
for module in layer.attention.self.key.modules():
|
50 |
+
for param in module.parameters():
|
51 |
+
param.requires_grad = True
|
52 |
+
for module in layer.attention.self.query.modules():
|
53 |
+
for param in module.parameters():
|
54 |
+
param.requires_grad = True
|
55 |
+
for module in layer.attention.self.value.modules():
|
56 |
+
for param in module.parameters():
|
57 |
+
param.requires_grad = True
|
58 |
+
|
59 |
+
def forward(self, sigma, **inputs):
|
60 |
+
return self.model(**inputs)
|
61 |
+
|
62 |
+
def save_model(self, save_dir):
|
63 |
+
self.model.save_pretrained(save_dir)
|
64 |
+
self.tokenizer.save_pretrained(save_dir)
|
65 |
+
|
66 |
+
def load_model(self, load_dir):
|
67 |
+
self.model = AutoModel.from_pretrained(load_dir)
|
68 |
+
self.tokenizer = AutoTokenizer.from_pretrained(load_dir)
|
69 |
+
|
70 |
+
@dataclass
|
71 |
+
class Loss:
|
72 |
+
loss: torch.FloatTensor
|
73 |
+
nlls: torch.FloatTensor
|
74 |
+
token_mask: torch.FloatTensor
|
75 |
+
|
76 |
+
class NLL(torchmetrics.MeanMetric):
|
77 |
+
pass
|
78 |
+
|
79 |
+
class BPD(NLL):
|
80 |
+
def compute(self) -> torch.Tensor:
|
81 |
+
"""Computes the bits per dimension.
|
82 |
+
Returns:
|
83 |
+
bpd
|
84 |
+
"""
|
85 |
+
return self.mean_value / self.weight / LOG2
|
86 |
+
|
87 |
+
class Perplexity(NLL):
|
88 |
+
def compute(self) -> torch.Tensor:
|
89 |
+
"""Computes the Perplexity.
|
90 |
+
Returns:
|
91 |
+
Perplexity
|
92 |
+
"""
|
93 |
+
return torch.exp(self.mean_value / self.weight)
|
94 |
+
|
95 |
+
|
96 |
+
# Based on MDLM repo
|
97 |
+
class Diffusion(L.LightningModule):
|
98 |
+
def __init__(self, config, tokenizer):
|
99 |
+
super().__init__()
|
100 |
+
self.config = config
|
101 |
+
self.tokenizer = tokenizer
|
102 |
+
|
103 |
+
self.softplus = torch.nn.Softplus()
|
104 |
+
metrics = torchmetrics.MetricCollection({
|
105 |
+
'nll': NLL(),
|
106 |
+
'bpd': BPD(),
|
107 |
+
'ppl': Perplexity(),
|
108 |
+
})
|
109 |
+
metrics.set_dtype(torch.float64)
|
110 |
+
self.train_metrics = metrics.clone(prefix='train/')
|
111 |
+
self.valid_metrics = metrics.clone(prefix='val/')
|
112 |
+
self.test_metrics = metrics.clone(prefix='test/')
|
113 |
+
|
114 |
+
self.T = self.config.T
|
115 |
+
self.lr = self.config.Optim.LR
|
116 |
+
self.backbone = WrapESM(self.config.MODEL_NAME)
|
117 |
+
self.noise = noise_schedule.get_noise(self.config, dtype=self.dtype)
|
118 |
+
self.time_conditioning = self.config.TIME_CONDITIONING
|
119 |
+
self.subs_masking = self.config.SUBS_MASKING
|
120 |
+
self.mask_index = self.tokenizer.mask_token_id
|
121 |
+
self.antithetic_sampling = self.config.Training.ANTITHETIC_SAMPLING
|
122 |
+
self.sampling_eps = self.config.Training.SAMPLING_EPS
|
123 |
+
self.neg_infinity = -1000000.0
|
124 |
+
|
125 |
+
|
126 |
+
############ FORWARD DIFFUSION #########
|
127 |
+
def compute_loss(self, latents, attention_mask, val):
|
128 |
+
""""Average of MLM losses to stabilize training"""
|
129 |
+
self.noise.eval() if val else self.noise.train()
|
130 |
+
loss = self.forward_diffusion(latents)
|
131 |
+
|
132 |
+
nlls = loss * attention_mask
|
133 |
+
count = attention_mask.sum()
|
134 |
+
batch_nll = nlls.sum()
|
135 |
+
token_nll = batch_nll / count
|
136 |
+
|
137 |
+
return Loss(loss=token_nll, nlls=nlls, token_mask=attention_mask)
|
138 |
+
|
139 |
+
def forward_diffusion(self, x0):
|
140 |
+
"""Forward diffusion process, adds noise to the latents."""
|
141 |
+
t = self.sample_timestep(x0.shape[0], x0.device)
|
142 |
+
|
143 |
+
sigma, dsigma = self.noise(t)
|
144 |
+
unet_conditioning = sigma[:, None]
|
145 |
+
move_chance = 1 - torch.exp(-sigma[:, None])
|
146 |
+
|
147 |
+
xt = self.q_xt(x0, move_chance)
|
148 |
+
model_output = self.forward(xt, unet_conditioning)
|
149 |
+
|
150 |
+
# SUBS parameterization, continuous time.
|
151 |
+
log_p_theta = torch.gather(input=model_output, dim=-1, index=x0[:, :, None]).squeeze(-1)
|
152 |
+
scale = (dsigma / torch.expm1(sigma))[:, None]
|
153 |
+
loss = - log_p_theta * scale
|
154 |
+
return loss
|
155 |
+
|
156 |
+
def sample_timestep(self, n, device):
|
157 |
+
_eps_t = torch.rand(n, device=device)
|
158 |
+
if self.antithetic_sampling:
|
159 |
+
offset = torch.arange(n, device=device) / n
|
160 |
+
_eps_t = (_eps_t / n + offset) % 1
|
161 |
+
t = (1 - self.sampling_eps) * _eps_t + self.sampling_eps
|
162 |
+
return t
|
163 |
+
|
164 |
+
def q_xt(self, x, move_chance):
|
165 |
+
"""
|
166 |
+
Computes the noisy sample xt.
|
167 |
+
Args:
|
168 |
+
x: int torch.Tensor with shape (batch_size, diffusion_model_input_length), input.
|
169 |
+
move_chance: float torch.Tensor with shape (batch_size, 1).
|
170 |
+
"""
|
171 |
+
move_indices = torch.rand(* x.shape, device=x.device) < move_chance
|
172 |
+
xt = torch.where(move_indices, self.mask_index, x) # Use variable masking rate to mask tokens (introduce noise)
|
173 |
+
return xt
|
174 |
+
|
175 |
+
def forward(self, latents, sigma):
|
176 |
+
esm_outputs = self.backbone(latents, sigma)
|
177 |
+
optimized_logits = self.subs_parameterization(esm_outputs.logits, latents)
|
178 |
+
return optimized_logits
|
179 |
+
|
180 |
+
def subs_parameterization(self, logits, xt):
|
181 |
+
logits[:, :, self.mask_index] += self.neg_infinity
|
182 |
+
logits = logits - torch.logsumexp(logits, dim=-1, keepdim=True)
|
183 |
+
|
184 |
+
unmasked_indices = (xt != self.mask_index)
|
185 |
+
logits[unmasked_indices] = self.neg_infinity
|
186 |
+
logits[unmasked_indices, xt[unmasked_indices]] = 0
|
187 |
+
return logits
|
188 |
+
|
189 |
+
|
190 |
+
######### GENERATION #########
|
191 |
+
def sample_prior(self, *batch_dims):
|
192 |
+
return self.mask_index * torch.ones(* batch_dims, dtype=torch.int64)
|
193 |
+
|
194 |
+
def sample_categorical(categorical_probs):
|
195 |
+
gumbel_norm = (1e-10 - (torch.rand_like(categorical_probs) + 1e-10).log())
|
196 |
+
return (categorical_probs / gumbel_norm).argmax(dim=-1)
|
197 |
+
|
198 |
+
def ddpm_caching_update(self, x, t, dt, p_x0=None):
|
199 |
+
sigma_t, _ = self.noise(t)
|
200 |
+
if t.ndim > 1:
|
201 |
+
t = t.squeeze(-1)
|
202 |
+
assert t.ndim == 1
|
203 |
+
move_chance_t = t[:, None, None]
|
204 |
+
move_chance_s = (t - dt)[:, None, None]
|
205 |
+
assert move_chance_t.ndim == 3, move_chance_t.shape
|
206 |
+
if p_x0 is None:
|
207 |
+
p_x0 = self.forward(x, sigma_t).exp()
|
208 |
+
|
209 |
+
assert move_chance_t.ndim == p_x0.ndim
|
210 |
+
q_xs = p_x0 * (move_chance_t - move_chance_s)
|
211 |
+
q_xs[:, :, self.mask_index] = move_chance_s[:, :, 0]
|
212 |
+
_x = self.sample_categorical(q_xs)
|
213 |
+
|
214 |
+
copy_flag = (x != self.mask_index).to(x.dtype)
|
215 |
+
return p_x0, copy_flag * x + (1 - copy_flag) * _x
|
216 |
+
|
217 |
+
|
218 |
+
@torch.no_grad()
|
219 |
+
def sample_subs_guidance(self, n_samples, stride_length, num_strides, dt=0.001):
|
220 |
+
ones = torch.ones(n_samples, dtype=self.dtype,device=self.device)
|
221 |
+
num_steps = int(1 / dt)
|
222 |
+
sampling_steps = 0
|
223 |
+
intermediate_tokens = []
|
224 |
+
target = None
|
225 |
+
|
226 |
+
for _ in range(num_strides + 1):
|
227 |
+
p_x0_cache = None
|
228 |
+
x = self.sample_prior(n_samples,self.config.model.length).to(self.device)
|
229 |
+
|
230 |
+
if target is not None:
|
231 |
+
x[:, : -stride_length] = target
|
232 |
+
|
233 |
+
for i in range(num_steps + 1):
|
234 |
+
p_x0_cache, x_next = self.ddpm_caching_update(x=x, t=(1 - i * dt) * ones, dt=dt, p_x0=p_x0_cache)
|
235 |
+
if (not torch.allclose(x_next, x) or self.time_conditioning):
|
236 |
+
p_x0_cache = None
|
237 |
+
sampling_steps += 1
|
238 |
+
x = x_next
|
239 |
+
x = self.forward(x, 0 * ones).argmax(dim=-1)
|
240 |
+
intermediate_tokens.append(x[:, :stride_length].cpu().numpy())
|
241 |
+
target = x[:, stride_length:]
|
242 |
+
|
243 |
+
intermediate_tokens.append(target.cpu().numpy())
|
244 |
+
intermediate_text_samples = []
|
245 |
+
sequence_lengths = ((np.concatenate(intermediate_tokens, axis=1)[:, 1:]
|
246 |
+
== self.tokenizer.eos_token_id).cumsum(-1) == 0).sum(-1)
|
247 |
+
|
248 |
+
for i in range(2, len(intermediate_tokens) + 1):
|
249 |
+
intermediate_text_samples.append(self.tokenizer.decode(np.concatenate(intermediate_tokens[:i], axis=1)))
|
250 |
+
|
251 |
+
return (sampling_steps, intermediate_text_samples,
|
252 |
+
sequence_lengths)
|
253 |
+
|
254 |
+
def restore_model_and_semi_ar_sample(self, stride_length, num_strides, dt=0.001):
|
255 |
+
"""Generate samples from the model."""
|
256 |
+
# Lightning auto-casting is not working in this method for some reason
|
257 |
+
self.backbone.eval()
|
258 |
+
self.noise.eval()
|
259 |
+
|
260 |
+
(sampling_steps, samples, sequence_lengths) = self.sample_subs_guidance(n_samples=self.config.Loader.BATCH_SIZE,stride_length=stride_length,num_strides=num_strides,dt=dt)
|
261 |
+
|
262 |
+
self.backbone.train()
|
263 |
+
self.noise.train()
|
264 |
+
return sampling_steps, samples, sequence_lengths
|
scripts/generate.py
ADDED
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
from transformers import AutoTokenizer, AutoModel
|
4 |
+
from diffusion import Diffusion
|
5 |
+
import config
|
6 |
+
from esm_utils import load_esm2_model, get_latents
|
7 |
+
|
8 |
+
def mask_sequence(sequence, mask_char='X'):
|
9 |
+
"""Masks parts of the sequence based on the mask_char."""
|
10 |
+
mask_indices = [i for i, char in enumerate(sequence) if char == mask_char]
|
11 |
+
masked_sequence = sequence.replace(mask_char, '[MASK]')
|
12 |
+
return masked_sequence, mask_indices
|
13 |
+
|
14 |
+
def generate_filled_sequence(model, tokenizer, esm_model, masked_sequence, mask_indices):
|
15 |
+
"""Generates the filled sequence for the masked regions."""
|
16 |
+
inputs = tokenizer(masked_sequence, return_tensors="pt")
|
17 |
+
with torch.no_grad():
|
18 |
+
outputs = esm_model(**inputs)
|
19 |
+
latents = outputs.last_hidden_state.squeeze(0)
|
20 |
+
|
21 |
+
sigma = torch.rand(1, device=latents.device)
|
22 |
+
noisy_latents = model.forward(latents, sigma)
|
23 |
+
denoised_latents = model.reverse_diffusion(noisy_latents, sigma)
|
24 |
+
|
25 |
+
filled_sequence = list(masked_sequence)
|
26 |
+
for idx in mask_indices:
|
27 |
+
token_id = torch.argmax(denoised_latents[idx]).item()
|
28 |
+
filled_sequence[idx] = tokenizer.decode([token_id])
|
29 |
+
|
30 |
+
return ''.join(filled_sequence)
|
31 |
+
|
32 |
+
def generate_scaffold_sequence(model, tokenizer, esm_model, peptides, final_length):
|
33 |
+
"""Generates a scaffold sequence to connect multiple peptides."""
|
34 |
+
total_peptide_length = sum(len(peptide) for peptide in peptides)
|
35 |
+
scaffold_length = final_length - total_peptide_length
|
36 |
+
if scaffold_length <= 0:
|
37 |
+
raise ValueError("Final length must be greater than the combined length of the peptides.")
|
38 |
+
|
39 |
+
scaffold = "[MASK]" * scaffold_length
|
40 |
+
masked_sequence = "".join(peptides[:1] + [scaffold] + peptides[1:])
|
41 |
+
|
42 |
+
inputs = tokenizer(masked_sequence, return_tensors="pt")
|
43 |
+
with torch.no_grad():
|
44 |
+
outputs = esm_model(**inputs)
|
45 |
+
latents = outputs.last_hidden_state.squeeze(0)
|
46 |
+
|
47 |
+
sigma = torch.rand(1, device=latents.device)
|
48 |
+
noisy_latents = model.forward(latents, sigma)
|
49 |
+
denoised_latents = model.reverse_diffusion(noisy_latents, sigma)
|
50 |
+
|
51 |
+
filled_sequence = list(masked_sequence)
|
52 |
+
scaffold_start = len(peptides[0])
|
53 |
+
scaffold_end = scaffold_start + scaffold_length
|
54 |
+
for idx in range(scaffold_start, scaffold_end):
|
55 |
+
token_id = torch.argmax(denoised_latents[idx]).item()
|
56 |
+
filled_sequence[idx] = tokenizer.decode([token_id])
|
57 |
+
|
58 |
+
return ''.join(filled_sequence)
|
59 |
+
|
60 |
+
def generate_de_novo_sequence(model, tokenizer, esm_model, sequence_length):
|
61 |
+
"""Generates a de novo protein sequence of the specified length."""
|
62 |
+
scaffold = "[MASK]" * sequence_length
|
63 |
+
masked_sequence = scaffold
|
64 |
+
|
65 |
+
inputs = tokenizer(masked_sequence, return_tensors="pt")
|
66 |
+
with torch.no_grad():
|
67 |
+
outputs = esm_model(**inputs)
|
68 |
+
latents = outputs.last_hidden_state.squeeze(0)
|
69 |
+
|
70 |
+
sigma = torch.rand(1, device=latents.device)
|
71 |
+
noisy_latents = model.forward(latents, sigma)
|
72 |
+
denoised_latents = model.reverse_diffusion(noisy_latents, sigma)
|
73 |
+
|
74 |
+
filled_sequence = list(masked_sequence)
|
75 |
+
for idx in range(sequence_length):
|
76 |
+
token_id = torch.argmax(denoised_latents[idx]).item()
|
77 |
+
filled_sequence[idx] = tokenizer.decode([token_id])
|
78 |
+
|
79 |
+
return ''.join(filled_sequence)
|
80 |
+
|
81 |
+
if __name__ == "__main__":
|
82 |
+
import argparse
|
83 |
+
|
84 |
+
# Argument parsing
|
85 |
+
parser = argparse.ArgumentParser(description="Generate protein sequences using latent diffusion model.")
|
86 |
+
subparsers = parser.add_subparsers(dest="mode")
|
87 |
+
|
88 |
+
# Subparser for the first strategy (multiple peptides to scaffold)
|
89 |
+
parser_scaffold = subparsers.add_parser("scaffold", help="Generate scaffold to connect multiple peptides.")
|
90 |
+
parser_scaffold.add_argument("peptides", nargs='+', help="Peptides to connect.")
|
91 |
+
parser_scaffold.add_argument("final_length", type=int, help="Final length of the protein sequence.")
|
92 |
+
|
93 |
+
# Subparser for the second strategy (fill in regions)
|
94 |
+
parser_fill = subparsers.add_parser("fill", help="Fill in specified regions in a given protein sequence.")
|
95 |
+
parser_fill.add_argument("sequence", help="Protein sequence with regions to fill specified by 'X'.")
|
96 |
+
|
97 |
+
# Subparser for the third strategy (de novo generation)
|
98 |
+
parser_de_novo = subparsers.add_parser("de_novo", help="Generate a de novo protein sequence.")
|
99 |
+
parser_de_novo.add_argument("sequence_length", type=int, help="Length of the de novo generated protein sequence.")
|
100 |
+
|
101 |
+
args = parser.parse_args()
|
102 |
+
|
103 |
+
# Load models
|
104 |
+
tokenizer, esm_model = load_esm2_model(config.MODEL_NAME)
|
105 |
+
diffusion_model = Diffusion.load_from_checkpoint(config.Training.SAVE_DIR + "best_model.ckpt", config=config, latent_dim=config.LATENT_DIM)
|
106 |
+
diffusion_model.eval()
|
107 |
+
|
108 |
+
if args.mode == "scaffold":
|
109 |
+
peptides = args.peptides
|
110 |
+
final_length = args.final_length
|
111 |
+
filled_sequence = generate_scaffold_sequence(diffusion_model, tokenizer, esm_model, peptides, final_length)
|
112 |
+
print(f"Peptides: {' '.join(peptides)}")
|
113 |
+
print(f"Final Length: {final_length}")
|
114 |
+
print(f"Generated Protein: {filled_sequence}")
|
115 |
+
|
116 |
+
elif args.mode == "fill":
|
117 |
+
sequence = args.sequence
|
118 |
+
masked_sequence, mask_indices = mask_sequence(sequence)
|
119 |
+
filled_sequence = generate_filled_sequence(diffusion_model, tokenizer, esm_model, masked_sequence, mask_indices)
|
120 |
+
print(f"Original Sequence: {sequence}")
|
121 |
+
print(f"Masked Sequence: {masked_sequence}")
|
122 |
+
print(f"Filled Sequence: {filled_sequence}")
|
123 |
+
|
124 |
+
elif args.mode == "de_novo":
|
125 |
+
sequence_length = args.sequence_length
|
126 |
+
filled_sequence = generate_de_novo_sequence(diffusion_model, tokenizer, esm_model, sequence_length)
|
127 |
+
print(f"De Novo Sequence Length: {sequence_length}")
|
128 |
+
print(f"Generated Protein: {filled_sequence}")
|
129 |
+
|
scripts/noise_schedule.py
ADDED
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import abc
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
|
6 |
+
# Flags required to enable jit fusion kernels
|
7 |
+
torch._C._jit_set_profiling_mode(False)
|
8 |
+
torch._C._jit_set_profiling_executor(False)
|
9 |
+
torch._C._jit_override_can_fuse_on_cpu(True)
|
10 |
+
torch._C._jit_override_can_fuse_on_gpu(True)
|
11 |
+
|
12 |
+
|
13 |
+
def get_noise(config, dtype=torch.float32):
|
14 |
+
return LogLinearNoise()
|
15 |
+
|
16 |
+
if config.noise.type == 'geometric':
|
17 |
+
return GeometricNoise(config.noise.sigma_min,
|
18 |
+
config.noise.sigma_max)
|
19 |
+
elif config.noise.type == 'loglinear':
|
20 |
+
return LogLinearNoise()
|
21 |
+
elif config.noise.type == 'cosine':
|
22 |
+
return CosineNoise()
|
23 |
+
elif config.noise.type == 'cosinesqr':
|
24 |
+
return CosineSqrNoise()
|
25 |
+
elif config.noise.type == 'linear':
|
26 |
+
return Linear(config.noise.sigma_min,
|
27 |
+
config.noise.sigma_max,
|
28 |
+
dtype)
|
29 |
+
else:
|
30 |
+
raise ValueError(f'{config.noise.type} is not a valid noise')
|
31 |
+
|
32 |
+
|
33 |
+
def binary_discretization(z):
|
34 |
+
z_hard = torch.sign(z)
|
35 |
+
z_soft = z / torch.norm(z, dim=-1, keepdim=True)
|
36 |
+
return z_soft + (z_hard - z_soft).detach()
|
37 |
+
|
38 |
+
|
39 |
+
class Noise(abc.ABC, nn.Module):
|
40 |
+
"""
|
41 |
+
Baseline forward method to get the total + rate of noise at a timestep
|
42 |
+
"""
|
43 |
+
def forward(self, t):
|
44 |
+
# Assume time goes from 0 to 1
|
45 |
+
return self.total_noise(t), self.rate_noise(t)
|
46 |
+
|
47 |
+
@abc.abstractmethod
|
48 |
+
def rate_noise(self, t):
|
49 |
+
"""
|
50 |
+
Rate of change of noise ie g(t)
|
51 |
+
"""
|
52 |
+
pass
|
53 |
+
|
54 |
+
@abc.abstractmethod
|
55 |
+
def total_noise(self, t):
|
56 |
+
"""
|
57 |
+
Total noise ie \int_0^t g(t) dt + g(0)
|
58 |
+
"""
|
59 |
+
pass
|
60 |
+
|
61 |
+
|
62 |
+
class CosineNoise(Noise):
|
63 |
+
def __init__(self, eps=1e-3):
|
64 |
+
super().__init__()
|
65 |
+
self.eps = eps
|
66 |
+
|
67 |
+
def rate_noise(self, t):
|
68 |
+
cos = (1 - self.eps) * torch.cos(t * torch.pi / 2)
|
69 |
+
sin = (1 - self.eps) * torch.sin(t * torch.pi / 2)
|
70 |
+
scale = torch.pi / 2
|
71 |
+
return scale * sin / (cos + self.eps)
|
72 |
+
|
73 |
+
def total_noise(self, t):
|
74 |
+
cos = torch.cos(t * torch.pi / 2)
|
75 |
+
return - torch.log(self.eps + (1 - self.eps) * cos)
|
76 |
+
|
77 |
+
|
78 |
+
class CosineSqrNoise(Noise):
|
79 |
+
def __init__(self, eps=1e-3):
|
80 |
+
super().__init__()
|
81 |
+
self.eps = eps
|
82 |
+
|
83 |
+
def rate_noise(self, t):
|
84 |
+
cos = (1 - self.eps) * (
|
85 |
+
torch.cos(t * torch.pi / 2) ** 2)
|
86 |
+
sin = (1 - self.eps) * torch.sin(t * torch.pi)
|
87 |
+
scale = torch.pi / 2
|
88 |
+
return scale * sin / (cos + self.eps)
|
89 |
+
|
90 |
+
def total_noise(self, t):
|
91 |
+
cos = torch.cos(t * torch.pi / 2) ** 2
|
92 |
+
return - torch.log(self.eps + (1 - self.eps) * cos)
|
93 |
+
|
94 |
+
|
95 |
+
class Linear(Noise):
|
96 |
+
def __init__(self, sigma_min=0, sigma_max=10, dtype=torch.float32):
|
97 |
+
super().__init__()
|
98 |
+
self.sigma_min = torch.tensor(sigma_min, dtype=dtype)
|
99 |
+
self.sigma_max = torch.tensor(sigma_max, dtype=dtype)
|
100 |
+
|
101 |
+
def rate_noise(self, t):
|
102 |
+
return self.sigma_max - self.sigma_min
|
103 |
+
|
104 |
+
def total_noise(self, t):
|
105 |
+
return self.sigma_min + t * (self.sigma_max - self.sigma_min)
|
106 |
+
|
107 |
+
def importance_sampling_transformation(self, t):
|
108 |
+
f_T = torch.log1p(- torch.exp(- self.sigma_max))
|
109 |
+
f_0 = torch.log1p(- torch.exp(- self.sigma_min))
|
110 |
+
sigma_t = - torch.log1p(- torch.exp(t * f_T + (1 - t) * f_0))
|
111 |
+
return (sigma_t - self.sigma_min) / (
|
112 |
+
self.sigma_max - self.sigma_min)
|
113 |
+
|
114 |
+
|
115 |
+
class GeometricNoise(Noise):
|
116 |
+
def __init__(self, sigma_min=1e-3, sigma_max=1):
|
117 |
+
super().__init__()
|
118 |
+
self.sigmas = 1.0 * torch.tensor([sigma_min, sigma_max])
|
119 |
+
|
120 |
+
def rate_noise(self, t):
|
121 |
+
return self.sigmas[0] ** (1 - t) * self.sigmas[1] ** t * (
|
122 |
+
self.sigmas[1].log() - self.sigmas[0].log())
|
123 |
+
|
124 |
+
def total_noise(self, t):
|
125 |
+
return self.sigmas[0] ** (1 - t) * self.sigmas[1] ** t
|
126 |
+
|
127 |
+
|
128 |
+
class LogLinearNoise(Noise):
|
129 |
+
"""Log Linear noise schedule.
|
130 |
+
|
131 |
+
Built such that 1 - 1/e^(n(t)) interpolates between 0 and
|
132 |
+
~1 when t varies from 0 to 1. Total noise is
|
133 |
+
-log(1 - (1 - eps) * t), so the sigma will be
|
134 |
+
(1 - eps) * t.
|
135 |
+
"""
|
136 |
+
def __init__(self, eps=1e-3):
|
137 |
+
super().__init__()
|
138 |
+
self.eps = eps
|
139 |
+
self.sigma_max = self.total_noise(torch.tensor(1.0))
|
140 |
+
self.sigma_min = self.eps + self.total_noise(torch.tensor(0.0))
|
141 |
+
|
142 |
+
def rate_noise(self, t):
|
143 |
+
return (1 - self.eps) / (1 - (1 - self.eps) * t)
|
144 |
+
|
145 |
+
def total_noise(self, t):
|
146 |
+
return -torch.log1p(-(1 - self.eps) * t)
|
147 |
+
|
148 |
+
def importance_sampling_transformation(self, t):
|
149 |
+
f_T = torch.log1p(- torch.exp(- self.sigma_max))
|
150 |
+
f_0 = torch.log1p(- torch.exp(- self.sigma_min))
|
151 |
+
sigma_t = - torch.log1p(- torch.exp(t * f_T + (1 - t) * f_0))
|
152 |
+
t = - torch.expm1(- sigma_t) / (1 - self.eps)
|
153 |
+
return t
|
scripts/train_pytorch.py
ADDED
@@ -0,0 +1,165 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import config
|
3 |
+
import math
|
4 |
+
import sys
|
5 |
+
import os
|
6 |
+
from tqdm import tqdm
|
7 |
+
from torch.optim import AdamW
|
8 |
+
from transformers import AutoTokenizer
|
9 |
+
from diffusion import WrapESM, Diffusion
|
10 |
+
from data_loader import get_dataloaders
|
11 |
+
|
12 |
+
def save_hyperparams(ckpt_dir):
|
13 |
+
hyperparms_txt_file = os.path.join(ckpt_dir, "hyperparameters.txt")
|
14 |
+
with open(hyperparms_txt_file, 'w') as f:
|
15 |
+
for k, v in vars(config).items():
|
16 |
+
if k.isupper():
|
17 |
+
f.write(f"{k}: {v}\n")
|
18 |
+
|
19 |
+
def train_and_validate(model, optimizer, device, train_loader, val_loader, num_epochs, ckpt_dir):
|
20 |
+
best_val_loss = float('inf')
|
21 |
+
|
22 |
+
for epoch in range(num_epochs):
|
23 |
+
model.train()
|
24 |
+
|
25 |
+
print(f"EPOCH {epoch+1}/{num_epochs}")
|
26 |
+
sys.stderr.flush()
|
27 |
+
total_loss = 0.0
|
28 |
+
train_tokens = 0
|
29 |
+
weighted_total_train_loss = 0.0
|
30 |
+
|
31 |
+
train_update_interval = len(train_loader) // 4
|
32 |
+
|
33 |
+
with tqdm(enumerate(train_loader), desc="Training batch", total=len(train_loader), leave=True, position=0, ncols=100) as trainbar:
|
34 |
+
for step, inputs in trainbar:
|
35 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
36 |
+
optimizer.zero_grad()
|
37 |
+
outputs = model(**inputs)
|
38 |
+
train_loss = diffusion_model.compute_loss(inputs["input_ids"], inputs['attention_mask'],
|
39 |
+
val=False).loss
|
40 |
+
train_loss.backward()
|
41 |
+
optimizer.step()
|
42 |
+
|
43 |
+
total_loss += train_loss.item()
|
44 |
+
weighted_total_train_loss += train_loss.item() * inputs['input_ids'].shape[1] # Loss * sequence length
|
45 |
+
train_tokens += inputs['input_ids'].shape[1]
|
46 |
+
|
47 |
+
if (step+1) % train_update_interval == 0:
|
48 |
+
trainbar.update(train_update_interval)
|
49 |
+
|
50 |
+
avg_train_loss = total_loss / len(train_loader)
|
51 |
+
avg_train_neg_log_likelihood = weighted_total_train_loss / train_tokens
|
52 |
+
train_perplexity = math.exp(avg_train_neg_log_likelihood)
|
53 |
+
|
54 |
+
# Save model every epoch
|
55 |
+
train_ckpt_path = os.path.join(config.Eval.CHECKPOINT_PATH, f'epoch{epoch+1}')
|
56 |
+
model.save_model(train_ckpt_path)
|
57 |
+
save_hyperparams(train_ckpt_path)
|
58 |
+
|
59 |
+
# Validate model
|
60 |
+
if val_loader:
|
61 |
+
model.eval()
|
62 |
+
total_val_loss = 0.0
|
63 |
+
weighted_total_val_loss = 0.0
|
64 |
+
val_tokens = 0
|
65 |
+
|
66 |
+
with torch.no_grad():
|
67 |
+
val_update_interval = len(val_loader) // 4
|
68 |
+
|
69 |
+
with tqdm(enumerate(val_loader), desc='Validiation batch', total=len(val_loader), leave=True, position=0) as valbar:
|
70 |
+
for step, inputs in valbar:
|
71 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
72 |
+
outputs = model(**inputs)
|
73 |
+
val_loss = diffusion_model.compute_loss(inputs['input_ids'], inputs['attention_mask'],
|
74 |
+
val=True).loss.item()
|
75 |
+
|
76 |
+
total_val_loss += val_loss
|
77 |
+
weighted_total_val_loss += val_loss * inputs['input_ids'].shape[1] # Loss * sequence length
|
78 |
+
val_tokens += inputs['input_ids'].shape[1]
|
79 |
+
|
80 |
+
if (step+1) % val_update_interval == 0:
|
81 |
+
valbar.update(val_update_interval)
|
82 |
+
|
83 |
+
avg_val_loss = total_val_loss / len(val_loader)
|
84 |
+
avg_val_log_likelihood = weighted_total_val_loss / val_tokens
|
85 |
+
val_perplexity = math.exp(avg_val_log_likelihood)
|
86 |
+
|
87 |
+
# Save the best model based on validation loss
|
88 |
+
if avg_val_loss < best_val_loss:
|
89 |
+
best_val_loss = avg_val_loss
|
90 |
+
val_ckpt_path = os.path.join(config.Eval.CHECKPOINT_PATH, "best_model_epoch")
|
91 |
+
model.save_model(val_ckpt_path)
|
92 |
+
save_hyperparams(val_ckpt_path)
|
93 |
+
|
94 |
+
|
95 |
+
print(f"Average train loss: {avg_train_loss}")
|
96 |
+
print(f"Average train perplexity: {train_perplexity}\n")
|
97 |
+
sys.stdout.flush()
|
98 |
+
|
99 |
+
print(f"Average validation loss: {avg_val_loss}")
|
100 |
+
print(f"Average validation perplexity: {val_perplexity}\n")
|
101 |
+
sys.stdout.flush()
|
102 |
+
|
103 |
+
|
104 |
+
return avg_train_loss, train_perplexity, avg_val_loss, val_perplexity
|
105 |
+
|
106 |
+
|
107 |
+
def test(model, test_loader, device):
|
108 |
+
model.to(device).eval()
|
109 |
+
total_test_loss = 0.0
|
110 |
+
weighted_total_test_loss = 0.0
|
111 |
+
test_tokens = 0
|
112 |
+
|
113 |
+
with torch.no_grad():
|
114 |
+
for step, inputs in enumerate(test_loader):
|
115 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
116 |
+
outputs = model(**inputs)
|
117 |
+
test_loss = diffusion_model.compute_loss(inputs['input_ids'], inputs['attention_mask'],
|
118 |
+
val=True).loss.item()
|
119 |
+
|
120 |
+
total_test_loss += test_loss
|
121 |
+
weighted_total_test_loss += test_loss * inputs['input_ids'].shape[1] # loss * sequence length
|
122 |
+
test_tokens += inputs['input_ids'].shape[1]
|
123 |
+
|
124 |
+
avg_test_loss = total_test_loss / len(test_loader)
|
125 |
+
avg_test_log_likelihood = weighted_total_test_loss / test_tokens
|
126 |
+
test_perplexity = math.exp(avg_test_log_likelihood)
|
127 |
+
|
128 |
+
return avg_test_loss, test_perplexity
|
129 |
+
|
130 |
+
|
131 |
+
if __name__ == "__main__":
|
132 |
+
device = torch.device('cuda' if torch.cuda.is_available() else "cpu")
|
133 |
+
tokenizer = AutoTokenizer.from_pretrained(config.MODEL_NAME)
|
134 |
+
|
135 |
+
esm_model = WrapESM()
|
136 |
+
diffusion_model = Diffusion(config, tokenizer=tokenizer)
|
137 |
+
|
138 |
+
print(f'Trainable params before unfreezing: {sum(p.numel() for p in esm_model.parameters() if p.requires_grad)}')
|
139 |
+
|
140 |
+
esm_model.to(device)
|
141 |
+
diffusion_model.to(device)
|
142 |
+
|
143 |
+
esm_model.freeze_model()
|
144 |
+
esm_model.unfreeze_n_layers()
|
145 |
+
|
146 |
+
print(f'Trainable params after unfreezing: {sum(p.numel() for p in esm_model.parameters() if p.requires_grad)}')
|
147 |
+
|
148 |
+
train_loader, val_loader, test_loader = get_dataloaders(config)
|
149 |
+
optimizer = AdamW(filter(lambda p: p.requires_grad, esm_model.parameters()), lr=config.Optim.LR)
|
150 |
+
|
151 |
+
# Train and test the model
|
152 |
+
avg_train_loss, train_ppl, avg_val_loss, val_ppl = train_and_validate(esm_model, optimizer, device, train_loader, val_loader, config.Training.NUM_EPOCHS, config.Eval.CHECKPOINT_PATH)
|
153 |
+
avg_test_loss, test_ppl = test(esm_model, test_loader, device)
|
154 |
+
|
155 |
+
results_dict = {"Average train loss": avg_train_loss,
|
156 |
+
"Average train perplexity": train_ppl,
|
157 |
+
"Average val loss": avg_val_loss,
|
158 |
+
"Average val perplexity": val_ppl,
|
159 |
+
"Average test loss": avg_test_loss,
|
160 |
+
"Average test perplexity": test_ppl,
|
161 |
+
}
|
162 |
+
|
163 |
+
print("TRAIN AND TEST RESULTS")
|
164 |
+
for k, v in results_dict.items():
|
165 |
+
print(f"{k}: {v}\n")
|