Chat-UniVi: Unified Visual Representation Empowers Large Language Models with Image and Video Understanding
Paper or resources for more information: [Paper] [Code]
License
Llama 2 is licensed under the LLAMA 2 Community License, Copyright (c) Meta Platforms, Inc. All Rights Reserved.
๐ฎ Highlights
๐ก Unified visual representation for image and video
We employ a set of dynamic visual tokens to uniformly represent images and videos. This representation framework empowers the model to efficiently utilize a limited number of visual tokens to simultaneously capture the spatial details necessary for images and the comprehensive temporal relationship required for videos.
๐ฅ Joint training strategy, making LLMs understand both image and video
Chat-UniVi is trained on a mixed dataset containing both images and videos, allowing direct application to tasks involving both mediums without requiring any modifications.
๐ค High performance, complementary learning with image and video
Extensive experimental results demonstrate that Chat-UniVi, as a unified model, consistently outperforms even existing methods exclusively designed for either images or videos.
Inference for Video Understanding
import torch
import os
from ChatUniVi.constants import *
from ChatUniVi.conversation import conv_templates, SeparatorStyle
from ChatUniVi.model.builder import load_pretrained_model
from ChatUniVi.utils import disable_torch_init
from ChatUniVi.mm_utils import tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria
from PIL import Image
from decord import VideoReader, cpu
import numpy as np
def _get_rawvideo_dec(video_path, image_processor, max_frames=MAX_IMAGE_LENGTH, image_resolution=224, video_framerate=1, s=None, e=None):
# speed up video decode via decord.
if s is None:
start_time, end_time = None, None
else:
start_time = int(s)
end_time = int(e)
start_time = start_time if start_time >= 0. else 0.
end_time = end_time if end_time >= 0. else 0.
if start_time > end_time:
start_time, end_time = end_time, start_time
elif start_time == end_time:
end_time = start_time + 1
if os.path.exists(video_path):
vreader = VideoReader(video_path, ctx=cpu(0))
else:
print(video_path)
raise FileNotFoundError
fps = vreader.get_avg_fps()
f_start = 0 if start_time is None else int(start_time * fps)
f_end = int(min(1000000000 if end_time is None else end_time * fps, len(vreader) - 1))
num_frames = f_end - f_start + 1
if num_frames > 0:
# T x 3 x H x W
sample_fps = int(video_framerate)
t_stride = int(round(float(fps) / sample_fps))
all_pos = list(range(f_start, f_end + 1, t_stride))
if len(all_pos) > max_frames:
sample_pos = [all_pos[_] for _ in np.linspace(0, len(all_pos) - 1, num=max_frames, dtype=int)]
else:
sample_pos = all_pos
patch_images = [Image.fromarray(f) for f in vreader.get_batch(sample_pos).asnumpy()]
patch_images = torch.stack([image_processor.preprocess(img, return_tensors='pt')['pixel_values'][0] for img in patch_images])
slice_len = patch_images.shape[0]
return patch_images, slice_len
else:
print("video path: {} error.".format(video_path))
if __name__ == '__main__':
# Model Parameter
model_path = "Chat-UniVi/Chat-UniVi-13B" # or "Chat-UniVi/Chat-UniVi"ใ"Chat-UniVi/Chat-UniVi-v1.5"
video_path = ${video_path}
# The number of visual tokens varies with the length of the video. "max_frames" is the maximum number of frames.
# When the video is long, we will uniformly downsample the video to meet the frames when equal to the "max_frames".
max_frames = 100
# The number of frames retained per second in the video.
video_framerate = 1
# Input Text
qs = "Describe the video."
# Sampling Parameter
conv_mode = "simple"
temperature = 0.2
top_p = None
num_beams = 1
disable_torch_init()
model_path = os.path.expanduser(model_path)
model_name = "ChatUniVi"
tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, None, model_name)
mm_use_im_start_end = getattr(model.config, "mm_use_im_start_end", False)
mm_use_im_patch_token = getattr(model.config, "mm_use_im_patch_token", True)
if mm_use_im_patch_token:
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
if mm_use_im_start_end:
tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
model.resize_token_embeddings(len(tokenizer))
vision_tower = model.get_vision_tower()
if not vision_tower.is_loaded:
vision_tower.load_model()
image_processor = vision_tower.image_processor
if model.config.config["use_cluster"]:
for n, m in model.named_modules():
m = m.to(dtype=torch.bfloat16)
# Check if the video exists
if video_path is not None:
video_frames, slice_len = _get_rawvideo_dec(video_path, image_processor, max_frames=max_frames, video_framerate=video_framerate)
cur_prompt = qs
if model.config.mm_use_im_start_end:
qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN * slice_len + DEFAULT_IM_END_TOKEN + '\n' + qs
else:
qs = DEFAULT_IMAGE_TOKEN * slice_len + '\n' + qs
conv = conv_templates[conv_mode].copy()
conv.append_message(conv.roles[0], qs)
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(
0).cuda()
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
keywords = [stop_str]
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
with torch.inference_mode():
output_ids = model.generate(
input_ids,
images=video_frames.half().cuda(),
do_sample=True,
temperature=temperature,
top_p=top_p,
num_beams=num_beams,
output_scores=True,
return_dict_in_generate=True,
max_new_tokens=1024,
use_cache=True,
stopping_criteria=[stopping_criteria])
output_ids = output_ids.sequences
input_token_len = input_ids.shape[1]
n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item()
if n_diff_input_output > 0:
print(f'[Warning] {n_diff_input_output} output_ids are not the same as the input_ids')
outputs = tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True)[0]
outputs = outputs.strip()
if outputs.endswith(stop_str):
outputs = outputs[:-len(stop_str)]
outputs = outputs.strip()
print(outputs)
Inference for Image Understanding
import torch
import os
from ChatUniVi.constants import *
from ChatUniVi.conversation import conv_templates, SeparatorStyle
from ChatUniVi.model.builder import load_pretrained_model
from ChatUniVi.utils import disable_torch_init
from ChatUniVi.mm_utils import tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria
from PIL import Image
if __name__ == '__main__':
# Model Parameter
model_path = "Chat-UniVi/Chat-UniVi-13B" # or "Chat-UniVi/Chat-UniVi"ใ"Chat-UniVi/Chat-UniVi-v1.5"
image_path = ${image_path}
# Input Text
qs = "Describe the image."
# Sampling Parameter
conv_mode = "simple"
temperature = 0.2
top_p = None
num_beams = 1
disable_torch_init()
model_path = os.path.expanduser(model_path)
model_name = "ChatUniVi"
tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, None, model_name)
mm_use_im_start_end = getattr(model.config, "mm_use_im_start_end", False)
mm_use_im_patch_token = getattr(model.config, "mm_use_im_patch_token", True)
if mm_use_im_patch_token:
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
if mm_use_im_start_end:
tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
model.resize_token_embeddings(len(tokenizer))
vision_tower = model.get_vision_tower()
if not vision_tower.is_loaded:
vision_tower.load_model()
image_processor = vision_tower.image_processor
# Check if the video exists
if image_path is not None:
cur_prompt = qs
if model.config.mm_use_im_start_end:
qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + qs
else:
qs = DEFAULT_IMAGE_TOKEN + '\n' + qs
conv = conv_templates[conv_mode].copy()
conv.append_message(conv.roles[0], qs)
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda()
image = Image.open(image_path)
image_tensor = image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
keywords = [stop_str]
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
with torch.inference_mode():
output_ids = model.generate(
input_ids,
images=image_tensor.unsqueeze(0).half().cuda(),
do_sample=True,
temperature=temperature,
top_p=top_p,
num_beams=num_beams,
max_new_tokens=1024,
use_cache=True,
stopping_criteria=[stopping_criteria])
input_token_len = input_ids.shape[1]
n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item()
if n_diff_input_output > 0:
print(f'[Warning] {n_diff_input_output} output_ids are not the same as the input_ids')
outputs = tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True)[0]
outputs = outputs.strip()
if outputs.endswith(stop_str):
outputs = outputs[:-len(stop_str)]
outputs = outputs.strip()
print(outputs)
- Downloads last month
- 188