OpenELM-1_1B-DPO-full-llama-improve-openelm

This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1360
  • Rewards/chosen: -5.6875
  • Rewards/rejected: -6.1562
  • Rewards/accuracies: 0.5469
  • Rewards/margins: 0.4668
  • Logps/rejected: -904.0
  • Logps/chosen: -888.0
  • Logits/rejected: -9.5625
  • Logits/chosen: -10.1875

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 16
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • total_eval_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
0.0021 0.1047 100 0.9013 -3.25 -3.3906 0.4883 0.1416 -628.0 -644.0 -9.6875 -10.25
0.0015 0.2093 200 0.7819 -1.1094 -1.1953 0.5078 0.0850 -408.0 -430.0 -7.25 -8.0
0.0056 0.3140 300 0.8233 -3.9844 -4.3125 0.5391 0.3398 -720.0 -716.0 -3.7344 -4.6875
0.001 0.4186 400 1.2958 -5.375 -5.7812 0.5156 0.4141 -868.0 -856.0 -7.5 -8.125
0.0089 0.5233 500 1.5850 -8.4375 -8.875 0.5273 0.4688 -1176.0 -1160.0 -7.6562 -8.375
0.0037 0.6279 600 0.9525 -4.0312 -4.3438 0.5215 0.3027 -720.0 -720.0 -12.0 -12.3125
0.003 0.7326 700 2.1298 -9.4375 -10.5 0.5371 1.1016 -1344.0 -1256.0 -3.6875 -4.875
0.0001 0.8373 800 2.1121 -9.4375 -10.4375 0.5312 1.0547 -1336.0 -1264.0 -8.6875 -9.5
0.0037 0.9419 900 1.3021 -7.0 -7.0938 0.5156 0.0923 -996.0 -1016.0 -9.625 -9.9375
0.0003 1.0466 1000 1.0153 -5.7188 -5.9062 0.5430 0.2090 -880.0 -888.0 -10.375 -10.75
0.0001 1.1512 1100 1.1537 -6.5312 -6.8125 0.5273 0.2734 -968.0 -972.0 -9.9375 -10.5
0.0016 1.2559 1200 1.2422 -6.9688 -7.25 0.5312 0.2773 -1012.0 -1016.0 -11.125 -11.5
0.0001 1.3605 1300 1.2745 -7.4062 -7.6875 0.5215 0.2969 -1056.0 -1056.0 -11.25 -11.5625
0.0001 1.4652 1400 0.9129 -4.1562 -4.375 0.5332 0.2168 -724.0 -732.0 -10.5 -10.8125
0.0 1.5699 1500 1.1999 -6.1562 -6.5938 0.5449 0.4473 -948.0 -932.0 -7.0625 -7.8438
0.0 1.6745 1600 1.2007 -5.75 -6.1875 0.5371 0.4434 -908.0 -892.0 -8.75 -9.5
0.0001 1.7792 1700 1.3752 -7.3438 -7.9062 0.5371 0.5664 -1080.0 -1056.0 -8.0625 -8.8125
0.0 1.8838 1800 1.2737 -6.5625 -7.125 0.5469 0.5508 -1000.0 -976.0 -9.0625 -9.75
0.0001 1.9885 1900 1.0200 -4.625 -4.9375 0.5391 0.2969 -784.0 -780.0 -10.25 -10.8125
0.0 2.0931 2000 1.0691 -5.25 -5.6562 0.5449 0.3926 -852.0 -844.0 -9.75 -10.375
0.0 2.1978 2100 1.1145 -5.625 -6.0938 0.5469 0.4531 -896.0 -884.0 -9.375 -10.0
0.0 2.3025 2200 1.1357 -5.8125 -6.3125 0.5527 0.4766 -920.0 -900.0 -9.125 -9.8125
0.0001 2.4071 2300 1.1362 -5.8125 -6.2812 0.5469 0.4766 -916.0 -900.0 -9.1875 -9.8125
0.0 2.5118 2400 1.1353 -5.7188 -6.1875 0.5430 0.4688 -908.0 -892.0 -9.4375 -10.0625
0.0 2.6164 2500 1.1318 -5.6875 -6.1562 0.5391 0.4629 -904.0 -888.0 -9.5625 -10.1875
0.0 2.7211 2600 1.1339 -5.6875 -6.1562 0.5430 0.4688 -904.0 -888.0 -9.5625 -10.1875
0.0 2.8257 2700 1.1359 -5.6875 -6.1562 0.5469 0.4668 -904.0 -888.0 -9.5625 -10.1875
0.0 2.9304 2800 1.1360 -5.6875 -6.1562 0.5469 0.4668 -904.0 -888.0 -9.5625 -10.1875

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.3.0
  • Datasets 3.0.0
  • Tokenizers 0.19.1
Downloads last month
8
Safetensors
Model size
1.08B params
Tensor type
BF16
·
Inference Examples
Inference API (serverless) does not yet support model repos that contain custom code.