|
--- |
|
library_name: transformers |
|
tags: |
|
- trl |
|
- cpo |
|
- generated_from_trainer |
|
model-index: |
|
- name: OpenELM-1_1B-CPO |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# OpenELM-1_1B-CPO |
|
|
|
This model was trained from scratch on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.1904 |
|
- Rewards/chosen: -3.6406 |
|
- Rewards/rejected: -4.4375 |
|
- Rewards/accuracies: 0.5918 |
|
- Rewards/margins: 0.8008 |
|
- Logps/rejected: -444.0 |
|
- Logps/chosen: -364.0 |
|
- Logits/rejected: -7.5312 |
|
- Logits/chosen: -8.875 |
|
- Nll Loss: 1.1719 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 4 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 64 |
|
- total_eval_batch_size: 64 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Logits/chosen | Logits/rejected | Logps/chosen | Logps/rejected | Validation Loss | Nll Loss | Rewards/accuracies | Rewards/chosen | Rewards/margins | Rewards/rejected | |
|
|:-------------:|:------:|:----:|:-------------:|:---------------:|:------------:|:--------------:|:---------------:|:--------:|:------------------:|:--------------:|:---------------:|:----------------:| |
|
| 2.4271 | 0.1047 | 100 | -12.3125 | -12.125 | -336.0 | -328.0 | 2.2959 | 1.0859 | 0.4980 | -3.3594 | -0.0850 | -3.2812 | |
|
| 2.2538 | 0.2093 | 200 | -9.875 | -9.5 | -338.0 | -346.0 | 2.1836 | 1.0938 | 0.5234 | -3.3906 | 0.0640 | -3.4531 | |
|
| 2.1253 | 0.3140 | 300 | -11.4375 | -11.0 | -346.0 | -360.0 | 2.1307 | 1.1172 | 0.5176 | -3.4531 | 0.1416 | -3.5938 | |
|
| 2.0609 | 0.4186 | 400 | -11.125 | -10.625 | -332.0 | -344.0 | 2.1359 | 1.0703 | 0.5293 | -3.3281 | 0.1187 | -3.4375 | |
|
| 2.1905 | 0.5233 | 500 | -9.3125 | -8.5 | -338.0 | -352.0 | 2.1286 | 1.0859 | 0.5254 | -3.375 | 0.1357 | -3.5156 | |
|
| 2.1304 | 0.6279 | 600 | -10.625 | -9.625 | -360.0 | -398.0 | 2.1410 | 1.1562 | 0.5723 | -3.6094 | 0.3672 | -3.9688 | |
|
| 2.2554 | 0.7326 | 700 | -9.6875 | -8.5625 | -374.0 | -416.0 | 2.1848 | 1.2031 | 0.5664 | -3.7344 | 0.4258 | -4.1562 | |
|
| 2.0796 | 0.8373 | 800 | -7.8438 | -7.0312 | -346.0 | -374.0 | 2.1224 | 1.1172 | 0.5469 | -3.4531 | 0.2852 | -3.75 | |
|
| 2.1021 | 0.9419 | 900 | -6.2812 | -5.2812 | -350.0 | -390.0 | 2.1099 | 1.1328 | 0.5723 | -3.5 | 0.4062 | -3.9062 | |
|
| 1.5182 | 1.0471 | 1000 | 2.1662 | -3.5 | -3.8594 | 0.5664 | 0.3633 | -386.0 | -350.0 | -9.375 | -10.625 | 1.125 | |
|
| 1.4917 | 1.1518 | 1100 | 2.1588 | -3.5625 | -4.0 | 0.5703 | 0.4395 | -400.0 | -356.0 | -6.4688 | -7.875 | 1.1484 | |
|
| 1.5219 | 1.2564 | 1200 | 2.1449 | -3.625 | -4.1875 | 0.5938 | 0.5586 | -420.0 | -364.0 | -6.6562 | -7.7812 | 1.1719 | |
|
| 1.5292 | 1.3611 | 1300 | 2.1489 | -3.5312 | -4.0 | 0.5742 | 0.4785 | -402.0 | -354.0 | -7.75 | -8.875 | 1.1406 | |
|
| 1.4257 | 1.4657 | 1400 | 2.1193 | -3.5781 | -4.0938 | 0.5801 | 0.5156 | -410.0 | -358.0 | -7.7188 | -9.25 | 1.1562 | |
|
| 1.4366 | 1.5704 | 1500 | 2.0983 | -3.5938 | -4.1562 | 0.5898 | 0.5586 | -416.0 | -358.0 | -7.6875 | -8.9375 | 1.1562 | |
|
| 1.5246 | 1.6750 | 1600 | 2.1191 | -3.5781 | -4.2188 | 0.5938 | 0.625 | -420.0 | -358.0 | -5.4688 | -6.9062 | 1.1562 | |
|
| 1.4534 | 1.7797 | 1700 | 2.0829 | -3.4688 | -4.0312 | 0.5762 | 0.5625 | -404.0 | -348.0 | -9.0625 | -10.0625 | 1.1172 | |
|
| 1.4551 | 1.8844 | 1800 | 2.1033 | -3.5625 | -4.1562 | 0.5898 | 0.6016 | -416.0 | -356.0 | -6.8438 | -8.1875 | 1.1484 | |
|
| 1.4969 | 1.9890 | 1900 | 2.1046 | -3.5312 | -4.125 | 0.5762 | 0.5938 | -412.0 | -354.0 | -8.125 | -9.3125 | 1.1406 | |
|
| 0.9984 | 2.0937 | 2000 | 2.1806 | -3.6406 | -4.2812 | 0.5781 | 0.6367 | -428.0 | -364.0 | -7.9375 | -9.1875 | 1.1719 | |
|
| 0.9885 | 2.1983 | 2100 | 2.1927 | -3.6875 | -4.5 | 0.5801 | 0.7930 | -448.0 | -370.0 | -7.4062 | -8.6875 | 1.1875 | |
|
| 0.9814 | 2.3030 | 2200 | 2.1867 | -3.625 | -4.3438 | 0.5742 | 0.7266 | -436.0 | -362.0 | -7.5 | -8.8125 | 1.1719 | |
|
| 0.9844 | 2.4076 | 2300 | 2.1905 | -3.6875 | -4.5312 | 0.5996 | 0.8438 | -452.0 | -368.0 | -7.125 | -8.375 | 1.1875 | |
|
| 0.9931 | 2.5123 | 2400 | 2.1843 | -3.6406 | -4.4375 | 0.5820 | 0.7930 | -442.0 | -364.0 | -7.375 | -8.6875 | 1.1719 | |
|
| 0.9537 | 2.6170 | 2500 | 2.1907 | -3.6406 | -4.4688 | 0.5898 | 0.8125 | -446.0 | -364.0 | -7.5 | -8.8125 | 1.1719 | |
|
| 0.9512 | 2.7216 | 2600 | 2.1918 | -3.6406 | -4.4375 | 0.5898 | 0.8086 | -446.0 | -364.0 | -7.5 | -8.8125 | 1.1719 | |
|
| 0.9604 | 2.8263 | 2700 | 2.1906 | -3.6406 | -4.4375 | 0.5879 | 0.7969 | -442.0 | -364.0 | -7.5312 | -8.875 | 1.1719 | |
|
| 1.0208 | 2.9309 | 2800 | 2.1904 | -3.6406 | -4.4375 | 0.5918 | 0.8008 | -444.0 | -364.0 | -7.5312 | -8.875 | 1.1719 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.2 |
|
- Pytorch 2.3.0 |
|
- Datasets 3.0.0 |
|
- Tokenizers 0.19.1 |
|
|