bert_base_for_whole_train_result_Spam-Ham_farshad_half_2_4

This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0523
  • Accuracy: 0.9898
  • F1: 0.9902

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 64
  • total_train_batch_size: 4096
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
0.6209 5.8501 50 0.4234 0.8962 0.8988
0.2544 11.7002 100 0.0952 0.9722 0.9727
0.0509 17.5503 150 0.0440 0.9872 0.9876
0.0164 23.4004 200 0.0353 0.9910 0.9913
0.0088 29.2505 250 0.0392 0.9910 0.9913
0.0054 35.1005 300 0.0422 0.9910 0.9913
0.0053 40.9506 350 0.0586 0.9872 0.9876
0.0032 46.8007 400 0.0509 0.9890 0.9893
0.0031 52.6508 450 0.0438 0.9910 0.9913
0.0021 58.5009 500 0.0500 0.9916 0.9919
0.0026 64.3510 550 0.0419 0.9922 0.9924
0.0023 70.2011 600 0.0578 0.9887 0.9890
0.0012 76.0512 650 0.0472 0.9910 0.9913
0.0013 81.9013 700 0.0610 0.9898 0.9901
0.001 87.7514 750 0.0659 0.9898 0.9902
0.0016 93.6015 800 0.0523 0.9898 0.9902

Framework versions

  • Transformers 4.40.0
  • Pytorch 2.4.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.19.1
Downloads last month
0
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.

Model tree for CatBarks/bert_base_for_whole_train_result_Spam-Ham_farshad_half_2_4

Finetuned
(2938)
this model