bert_base_for_whole_train_result_Spam-Ham_farshad_4_2
This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0511
- Accuracy: 0.9939
- F1: 0.9941
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 64
- total_train_batch_size: 4096
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
0.6361 | 2.9250 | 50 | 0.4585 | 0.8883 | 0.8874 |
0.2472 | 5.8501 | 100 | 0.0880 | 0.9722 | 0.9728 |
0.0507 | 8.7751 | 150 | 0.0429 | 0.9861 | 0.9865 |
0.0223 | 11.7002 | 200 | 0.0454 | 0.9849 | 0.9853 |
0.0121 | 14.6252 | 250 | 0.0397 | 0.9896 | 0.9899 |
0.0075 | 17.5503 | 300 | 0.0397 | 0.9916 | 0.9919 |
0.006 | 20.4753 | 350 | 0.0388 | 0.9919 | 0.9922 |
0.005 | 23.4004 | 400 | 0.0363 | 0.9925 | 0.9927 |
0.0034 | 26.3254 | 450 | 0.0404 | 0.9904 | 0.9908 |
0.0044 | 29.2505 | 500 | 0.0349 | 0.9925 | 0.9927 |
0.0016 | 32.1755 | 550 | 0.0456 | 0.9904 | 0.9907 |
0.0015 | 35.1005 | 600 | 0.0582 | 0.9878 | 0.9881 |
0.0022 | 38.0256 | 650 | 0.0854 | 0.9846 | 0.9850 |
0.0018 | 40.9506 | 700 | 0.0423 | 0.9933 | 0.9936 |
0.001 | 43.8757 | 750 | 0.0557 | 0.9907 | 0.9910 |
0.0009 | 46.8007 | 800 | 0.0490 | 0.9925 | 0.9927 |
0.001 | 49.7258 | 850 | 0.0565 | 0.9904 | 0.9907 |
0.0006 | 52.6508 | 900 | 0.0602 | 0.9910 | 0.9913 |
0.0021 | 55.5759 | 950 | 0.0482 | 0.9907 | 0.9910 |
0.0008 | 58.5009 | 1000 | 0.0619 | 0.9893 | 0.9896 |
0.0008 | 61.4260 | 1050 | 0.0476 | 0.9919 | 0.9922 |
0.0007 | 64.3510 | 1100 | 0.0452 | 0.9927 | 0.9930 |
0.0005 | 67.2761 | 1150 | 0.0468 | 0.9939 | 0.9941 |
0.0005 | 70.2011 | 1200 | 0.0546 | 0.9916 | 0.9919 |
0.0005 | 73.1261 | 1250 | 0.0525 | 0.9919 | 0.9922 |
0.0004 | 76.0512 | 1300 | 0.0498 | 0.9936 | 0.9938 |
0.0004 | 78.9762 | 1350 | 0.0655 | 0.9896 | 0.9899 |
0.0004 | 81.9013 | 1400 | 0.0524 | 0.9922 | 0.9924 |
0.0005 | 84.8263 | 1450 | 0.0524 | 0.9916 | 0.9919 |
0.0004 | 87.7514 | 1500 | 0.0516 | 0.9927 | 0.9930 |
0.0004 | 90.6764 | 1550 | 0.0522 | 0.9927 | 0.9930 |
0.0004 | 93.6015 | 1600 | 0.0512 | 0.9939 | 0.9941 |
0.0003 | 96.5265 | 1650 | 0.0511 | 0.9939 | 0.9941 |
Framework versions
- Transformers 4.40.0
- Pytorch 2.4.1+cu121
- Datasets 3.1.0
- Tokenizers 0.19.1
- Downloads last month
- 0
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no library tag.
Model tree for CatBarks/bert_base_for_whole_train_result_Spam-Ham_farshad_4_2
Base model
google-bert/bert-base-uncased