bert_base_for_whole_train_result_Spam-Ham_farshad_4_1
This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0583
- Accuracy: 0.9916
- F1: 0.9919
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 64
- total_train_batch_size: 4096
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
0.5984 | 2.9250 | 50 | 0.4198 | 0.8741 | 0.8802 |
0.2434 | 5.8501 | 100 | 0.1013 | 0.9710 | 0.9716 |
0.0539 | 8.7751 | 150 | 0.0462 | 0.9840 | 0.9845 |
0.0238 | 11.7002 | 200 | 0.0472 | 0.9849 | 0.9853 |
0.0128 | 14.6252 | 250 | 0.0381 | 0.9884 | 0.9888 |
0.0079 | 17.5503 | 300 | 0.0509 | 0.9875 | 0.9879 |
0.0055 | 20.4753 | 350 | 0.0586 | 0.9846 | 0.9850 |
0.0045 | 23.4004 | 400 | 0.0581 | 0.9887 | 0.9891 |
0.005 | 26.3254 | 450 | 0.0494 | 0.9898 | 0.9902 |
0.0036 | 29.2505 | 500 | 0.0614 | 0.9875 | 0.9879 |
0.0018 | 32.1755 | 550 | 0.0466 | 0.9922 | 0.9925 |
0.0023 | 35.1005 | 600 | 0.0508 | 0.9916 | 0.9919 |
0.0016 | 38.0256 | 650 | 0.0960 | 0.9806 | 0.9810 |
0.002 | 40.9506 | 700 | 0.0495 | 0.9913 | 0.9916 |
0.0012 | 43.8757 | 750 | 0.0528 | 0.9925 | 0.9927 |
0.0025 | 46.8007 | 800 | 0.0464 | 0.9925 | 0.9927 |
0.0013 | 49.7258 | 850 | 0.0653 | 0.9878 | 0.9882 |
0.001 | 52.6508 | 900 | 0.0482 | 0.9925 | 0.9927 |
0.0017 | 55.5759 | 950 | 0.0515 | 0.9922 | 0.9924 |
0.0007 | 58.5009 | 1000 | 0.0444 | 0.9936 | 0.9938 |
0.0007 | 61.4260 | 1050 | 0.0522 | 0.9907 | 0.9910 |
0.0005 | 64.3510 | 1100 | 0.0802 | 0.9875 | 0.9879 |
0.0007 | 67.2761 | 1150 | 0.0641 | 0.9898 | 0.9902 |
0.0005 | 70.2011 | 1200 | 0.0546 | 0.9919 | 0.9922 |
0.0005 | 73.1261 | 1250 | 0.0558 | 0.9922 | 0.9924 |
0.0004 | 76.0512 | 1300 | 0.0647 | 0.9910 | 0.9913 |
0.0004 | 78.9762 | 1350 | 0.0599 | 0.9919 | 0.9922 |
0.0004 | 81.9013 | 1400 | 0.0704 | 0.9913 | 0.9916 |
0.0004 | 84.8263 | 1450 | 0.0657 | 0.9910 | 0.9913 |
0.0004 | 87.7514 | 1500 | 0.0583 | 0.9916 | 0.9919 |
Framework versions
- Transformers 4.40.0
- Pytorch 2.4.1+cu121
- Datasets 3.1.0
- Tokenizers 0.19.1
- Downloads last month
- 0
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no library tag.
Model tree for CatBarks/bert_base_for_whole_train_result_Spam-Ham_farshad_4_1
Base model
google-bert/bert-base-uncased