bert_base_for_whole_train_result_Spam-Ham_farshad_4_1

This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0583
  • Accuracy: 0.9916
  • F1: 0.9919

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 64
  • total_train_batch_size: 4096
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
0.5984 2.9250 50 0.4198 0.8741 0.8802
0.2434 5.8501 100 0.1013 0.9710 0.9716
0.0539 8.7751 150 0.0462 0.9840 0.9845
0.0238 11.7002 200 0.0472 0.9849 0.9853
0.0128 14.6252 250 0.0381 0.9884 0.9888
0.0079 17.5503 300 0.0509 0.9875 0.9879
0.0055 20.4753 350 0.0586 0.9846 0.9850
0.0045 23.4004 400 0.0581 0.9887 0.9891
0.005 26.3254 450 0.0494 0.9898 0.9902
0.0036 29.2505 500 0.0614 0.9875 0.9879
0.0018 32.1755 550 0.0466 0.9922 0.9925
0.0023 35.1005 600 0.0508 0.9916 0.9919
0.0016 38.0256 650 0.0960 0.9806 0.9810
0.002 40.9506 700 0.0495 0.9913 0.9916
0.0012 43.8757 750 0.0528 0.9925 0.9927
0.0025 46.8007 800 0.0464 0.9925 0.9927
0.0013 49.7258 850 0.0653 0.9878 0.9882
0.001 52.6508 900 0.0482 0.9925 0.9927
0.0017 55.5759 950 0.0515 0.9922 0.9924
0.0007 58.5009 1000 0.0444 0.9936 0.9938
0.0007 61.4260 1050 0.0522 0.9907 0.9910
0.0005 64.3510 1100 0.0802 0.9875 0.9879
0.0007 67.2761 1150 0.0641 0.9898 0.9902
0.0005 70.2011 1200 0.0546 0.9919 0.9922
0.0005 73.1261 1250 0.0558 0.9922 0.9924
0.0004 76.0512 1300 0.0647 0.9910 0.9913
0.0004 78.9762 1350 0.0599 0.9919 0.9922
0.0004 81.9013 1400 0.0704 0.9913 0.9916
0.0004 84.8263 1450 0.0657 0.9910 0.9913
0.0004 87.7514 1500 0.0583 0.9916 0.9919

Framework versions

  • Transformers 4.40.0
  • Pytorch 2.4.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.19.1
Downloads last month
0
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.

Model tree for CatBarks/bert_base_for_whole_train_result_Spam-Ham_farshad_4_1

Finetuned
(2938)
this model