camie-tagger / app /utils /onnx_processing.py
Camais03's picture
V1.5
29b445b verified
"""
ONNX-based batch image processing for the Image Tagger application.
"""
import os
import json
import time
import traceback
import numpy as np
import glob
import onnxruntime as ort
from PIL import Image
import torchvision.transforms as transforms
from concurrent.futures import ThreadPoolExecutor
def preprocess_image(image_path, image_size=512):
"""Process an image for inference"""
if not os.path.exists(image_path):
raise ValueError(f"Image not found at path: {image_path}")
# Initialize transform
transform = transforms.Compose([
transforms.ToTensor(),
])
try:
with Image.open(image_path) as img:
# Convert RGBA or Palette images to RGB
if img.mode in ('RGBA', 'P'):
img = img.convert('RGB')
# Get original dimensions
width, height = img.size
aspect_ratio = width / height
# Calculate new dimensions to maintain aspect ratio
if aspect_ratio > 1:
new_width = image_size
new_height = int(new_width / aspect_ratio)
else:
new_height = image_size
new_width = int(new_height * aspect_ratio)
# Resize with LANCZOS filter
img = img.resize((new_width, new_height), Image.Resampling.LANCZOS)
# Create new image with padding
new_image = Image.new('RGB', (image_size, image_size), (0, 0, 0))
paste_x = (image_size - new_width) // 2
paste_y = (image_size - new_height) // 2
new_image.paste(img, (paste_x, paste_y))
# Apply transforms
img_tensor = transform(new_image)
return img_tensor.numpy()
except Exception as e:
raise Exception(f"Error processing {image_path}: {str(e)}")
def process_single_image_onnx(image_path, model_path, metadata, threshold_profile="Overall",
active_threshold=0.35, active_category_thresholds=None,
min_confidence=0.1):
"""
Process a single image using ONNX model
Args:
image_path: Path to the image file
model_path: Path to the ONNX model file
metadata: Model metadata dictionary
threshold_profile: The threshold profile being used
active_threshold: Overall threshold value
active_category_thresholds: Category-specific thresholds
min_confidence: Minimum confidence to include in results
Returns:
Dictionary with tags and probabilities
"""
import time
try:
# Create ONNX tagger for this image (or reuse an existing one)
if hasattr(process_single_image_onnx, 'tagger'):
tagger = process_single_image_onnx.tagger
else:
# Get metadata path from model_path
metadata_path = model_path.replace('.onnx', '_metadata.json')
if not os.path.exists(metadata_path):
metadata_path = model_path.replace('.onnx', '') + '_metadata.json'
# Create new tagger
tagger = ONNXImageTagger(model_path, metadata_path)
# Cache it for future calls
process_single_image_onnx.tagger = tagger
# Preprocess the image
start_time = time.time()
img_array = preprocess_image(image_path)
# Run inference
results = tagger.predict_batch(
[img_array],
threshold=active_threshold,
category_thresholds=active_category_thresholds,
min_confidence=min_confidence
)
inference_time = time.time() - start_time
if results:
result = results[0]
result['inference_time'] = inference_time
return result
else:
return {
'success': False,
'error': 'Failed to process image',
'all_tags': [],
'all_probs': {},
'tags': {}
}
except Exception as e:
import traceback
print(f"Error in process_single_image_onnx: {str(e)}")
traceback.print_exc()
return {
'success': False,
'error': str(e),
'all_tags': [],
'all_probs': {},
'tags': {}
}
def preprocess_images_parallel(image_paths, image_size=512, max_workers=8):
"""Process multiple images in parallel"""
processed_images = []
valid_paths = []
# Define a worker function
def process_single_image(path):
try:
return preprocess_image(path, image_size), path
except Exception as e:
print(f"Error processing {path}: {str(e)}")
return None, path
# Process images in parallel
with ThreadPoolExecutor(max_workers=max_workers) as executor:
results = list(executor.map(process_single_image, image_paths))
# Filter results
for img_array, path in results:
if img_array is not None:
processed_images.append(img_array)
valid_paths.append(path)
return processed_images, valid_paths
def apply_category_limits(result, category_limits):
"""
Apply category limits to a result dictionary.
Args:
result: Result dictionary containing tags and all_tags
category_limits: Dictionary mapping categories to their tag limits
(0 = exclude category, -1 = no limit/include all)
Returns:
Updated result dictionary with limits applied
"""
if not category_limits or not result['success']:
return result
# Get the filtered tags
filtered_tags = result['tags']
# Apply limits to each category
for category, cat_tags in list(filtered_tags.items()):
# Get limit for this category, default to -1 (no limit)
limit = category_limits.get(category, -1)
if limit == 0:
# Exclude this category entirely
del filtered_tags[category]
elif limit > 0 and len(cat_tags) > limit:
# Limit to top N tags for this category
filtered_tags[category] = cat_tags[:limit]
# Regenerate all_tags list after applying limits
all_tags = []
for category, cat_tags in filtered_tags.items():
for tag, _ in cat_tags:
all_tags.append(tag)
# Update the result with limited tags
result['tags'] = filtered_tags
result['all_tags'] = all_tags
return result
class ONNXImageTagger:
"""ONNX-based image tagger for fast batch inference"""
def __init__(self, model_path, metadata_path):
# Load model
self.model_path = model_path
try:
self.session = ort.InferenceSession(
model_path,
providers=['CUDAExecutionProvider', 'CPUExecutionProvider']
)
print(f"Using providers: {self.session.get_providers()}")
except Exception as e:
print(f"CUDA not available, using CPU: {e}")
self.session = ort.InferenceSession(
model_path,
providers=['CPUExecutionProvider']
)
print(f"Using providers: {self.session.get_providers()}")
# Load metadata
with open(metadata_path, 'r') as f:
self.metadata = json.load(f)
# Get input name
self.input_name = self.session.get_inputs()[0].name
print(f"Model loaded successfully. Input name: {self.input_name}")
def predict_batch(self, image_arrays, threshold=0.325, category_thresholds=None, min_confidence=0.1):
"""Run batch inference on preprocessed image arrays"""
# Stack arrays into batch
batch_input = np.stack(image_arrays)
# Run inference
start_time = time.time()
outputs = self.session.run(None, {self.input_name: batch_input})
inference_time = time.time() - start_time
print(f"Batch inference completed in {inference_time:.4f} seconds ({inference_time/len(image_arrays):.4f} s/image)")
# Process outputs
initial_probs = 1.0 / (1.0 + np.exp(-outputs[0])) # Apply sigmoid
refined_probs = 1.0 / (1.0 + np.exp(-outputs[1])) if len(outputs) > 1 else initial_probs
# Apply thresholds and extract tags for each image
batch_results = []
for i in range(refined_probs.shape[0]):
probs = refined_probs[i]
# Extract and organize all probabilities
all_probs = {}
for idx in range(probs.shape[0]):
prob_value = float(probs[idx])
if prob_value >= min_confidence:
idx_str = str(idx)
tag_name = self.metadata['idx_to_tag'].get(idx_str, f"unknown-{idx}")
category = self.metadata['tag_to_category'].get(tag_name, "general")
if category not in all_probs:
all_probs[category] = []
all_probs[category].append((tag_name, prob_value))
# Sort tags by probability within each category
for category in all_probs:
all_probs[category] = sorted(
all_probs[category],
key=lambda x: x[1],
reverse=True
)
# Get the filtered tags based on the selected threshold
tags = {}
for category, cat_tags in all_probs.items():
# Use category-specific threshold if available
if category_thresholds and category in category_thresholds:
cat_threshold = category_thresholds[category]
else:
cat_threshold = threshold
tags[category] = [(tag, prob) for tag, prob in cat_tags if prob >= cat_threshold]
# Create a flat list of all tags above threshold
all_tags = []
for category, cat_tags in tags.items():
for tag, _ in cat_tags:
all_tags.append(tag)
batch_results.append({
'tags': tags,
'all_probs': all_probs,
'all_tags': all_tags,
'success': True
})
return batch_results
def batch_process_images_onnx(folder_path, model_path, metadata_path, threshold_profile,
active_threshold, active_category_thresholds, save_dir=None,
progress_callback=None, min_confidence=0.1, batch_size=16,
category_limits=None):
"""
Process all images in a folder using the ONNX model.
Args:
folder_path: Path to folder containing images
model_path: Path to the ONNX model file
metadata_path: Path to the model metadata file
threshold_profile: Selected threshold profile
active_threshold: Overall threshold value
active_category_thresholds: Category-specific thresholds
save_dir: Directory to save tag files (if None uses default)
progress_callback: Optional callback for progress updates
min_confidence: Minimum confidence threshold
batch_size: Number of images to process at once
category_limits: Dictionary mapping categories to their tag limits (0 = unlimited)
Returns:
Dictionary with results for each image
"""
from utils.file_utils import save_tags_to_file # Import here to avoid circular imports
# Find all image files in the folder
image_extensions = ['*.jpg', '*.jpeg', '*.png']
image_files = []
for ext in image_extensions:
image_files.extend(glob.glob(os.path.join(folder_path, ext)))
image_files.extend(glob.glob(os.path.join(folder_path, ext.upper())))
# Use a set to remove duplicate files (Windows filesystems are case-insensitive)
if os.name == 'nt': # Windows
# Use lowercase paths for comparison on Windows
unique_paths = set()
unique_files = []
for file_path in image_files:
normalized_path = os.path.normpath(file_path).lower()
if normalized_path not in unique_paths:
unique_paths.add(normalized_path)
unique_files.append(file_path)
image_files = unique_files
if not image_files:
return {
'success': False,
'error': f"No images found in {folder_path}",
'results': {}
}
# Use the provided save directory or create a default one
if save_dir is None:
app_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
save_dir = os.path.join(app_dir, "saved_tags")
# Ensure the directory exists
os.makedirs(save_dir, exist_ok=True)
# Create ONNX tagger
tagger = ONNXImageTagger(model_path, metadata_path)
# Process images in batches
results = {}
total_images = len(image_files)
processed = 0
start_time = time.time()
# Process in batches
for i in range(0, total_images, batch_size):
batch_start = time.time()
# Get current batch of images
batch_files = image_files[i:i+batch_size]
batch_size_actual = len(batch_files)
# Update progress if callback provided
if progress_callback:
progress_callback(processed, total_images, batch_files[0] if batch_files else None)
print(f"Processing batch {i//batch_size + 1}/{(total_images + batch_size - 1)//batch_size}: {batch_size_actual} images")
try:
# Preprocess images in parallel
processed_images, valid_paths = preprocess_images_parallel(batch_files)
if processed_images:
# Run batch prediction
batch_results = tagger.predict_batch(
processed_images,
threshold=active_threshold,
category_thresholds=active_category_thresholds,
min_confidence=min_confidence
)
# Process results for each image
for j, (image_path, result) in enumerate(zip(valid_paths, batch_results)):
# Update progress if callback provided
if progress_callback:
progress_callback(processed + j, total_images, image_path)
# Debug print to track what's happening
print(f"Before limiting - Tags for {os.path.basename(image_path)}: {len(result['all_tags'])} tags")
print(f"Category limits applied: {category_limits}")
# Make sure we apply limits right before saving
if category_limits and result['success']:
# Before counts for debugging
before_counts = {cat: len(tags) for cat, tags in result['tags'].items()}
# Apply the limits
result = apply_category_limits(result, category_limits)
# After counts for debugging
after_counts = {cat: len(tags) for cat, tags in result['tags'].items()}
# Print the effect of limits
print(f"Before limits: {before_counts}")
print(f"After limits: {after_counts}")
print(f"After limiting - Tags for {os.path.basename(image_path)}: {len(result['all_tags'])} tags")
# Save the tags to a file
if result['success']:
output_path = save_tags_to_file(
image_path=image_path,
all_tags=result['all_tags'],
custom_dir=save_dir,
overwrite=True
)
result['output_path'] = str(output_path)
# Store the result
results[image_path] = result
processed += batch_size_actual
# Calculate batch timing
batch_end = time.time()
batch_time = batch_end - batch_start
print(f"Batch processed in {batch_time:.2f} seconds ({batch_time/batch_size_actual:.2f} seconds per image)")
except Exception as e:
print(f"Error processing batch: {str(e)}")
traceback.print_exc()
# Process failed images one by one as fallback
for image_path in batch_files:
try:
# Update progress if callback provided
if progress_callback:
progress_callback(processed + j, total_images, image_path)
# Debug print to track what's happening
print(f"Before limiting - Tags for {os.path.basename(image_path)}: {len(result['all_tags'])} tags")
print(f"Category limits applied: {category_limits}")
# Make sure we apply limits right before saving
if category_limits and result['success']:
# Before counts for debugging
before_counts = {cat: len(tags) for cat, tags in result['tags'].items()}
# Apply the limits
result = apply_category_limits(result, category_limits)
# After counts for debugging
after_counts = {cat: len(tags) for cat, tags in result['tags'].items()}
# Print the effect of limits
print(f"Before limits: {before_counts}")
print(f"After limits: {after_counts}")
print(f"After limiting - Tags for {os.path.basename(image_path)}: {len(result['all_tags'])} tags")
# Preprocess single image
img_array = preprocess_image(image_path)
# Run inference on single image
single_results = tagger.predict_batch(
[img_array],
threshold=active_threshold,
category_thresholds=active_category_thresholds,
min_confidence=min_confidence
)
if single_results:
result = single_results[0]
# Save the tags to a file
if result['success']:
output_path = save_tags_to_file(
image_path=image_path,
all_tags=result['all_tags'],
custom_dir=save_dir,
overwrite=True # Add this to be consistent
)
result['output_path'] = str(output_path)
# Store the result
results[image_path] = result
else:
results[image_path] = {
'success': False,
'error': 'Failed to process image',
'all_tags': []
}
except Exception as img_e:
print(f"Error processing single image {image_path}: {str(img_e)}")
results[image_path] = {
'success': False,
'error': str(img_e),
'all_tags': []
}
processed += 1
# Final progress update
if progress_callback:
progress_callback(total_images, total_images, None)
end_time = time.time()
total_time = end_time - start_time
print(f"Batch processing finished. Total time: {total_time:.2f} seconds, Average: {total_time/total_images:.2f} seconds per image")
return {
'success': True,
'total': total_images,
'processed': len(results),
'results': results,
'save_dir': save_dir,
'time_elapsed': end_time - start_time
}