File size: 21,451 Bytes
29b445b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
"""

ONNX-based batch image processing for the Image Tagger application.

"""

import os
import json
import time
import traceback
import numpy as np
import glob
import onnxruntime as ort
from PIL import Image
import torchvision.transforms as transforms
from concurrent.futures import ThreadPoolExecutor

def preprocess_image(image_path, image_size=512):
    """Process an image for inference"""
    if not os.path.exists(image_path):
        raise ValueError(f"Image not found at path: {image_path}")
   
    # Initialize transform
    transform = transforms.Compose([
        transforms.ToTensor(),
    ])
   
    try:
        with Image.open(image_path) as img:
            # Convert RGBA or Palette images to RGB
            if img.mode in ('RGBA', 'P'):
                img = img.convert('RGB')
           
            # Get original dimensions
            width, height = img.size
            aspect_ratio = width / height
           
            # Calculate new dimensions to maintain aspect ratio
            if aspect_ratio > 1:
                new_width = image_size
                new_height = int(new_width / aspect_ratio)
            else:
                new_height = image_size
                new_width = int(new_height * aspect_ratio)
           
            # Resize with LANCZOS filter
            img = img.resize((new_width, new_height), Image.Resampling.LANCZOS)
           
            # Create new image with padding
            new_image = Image.new('RGB', (image_size, image_size), (0, 0, 0))
            paste_x = (image_size - new_width) // 2
            paste_y = (image_size - new_height) // 2
            new_image.paste(img, (paste_x, paste_y))
           
            # Apply transforms
            img_tensor = transform(new_image)
            return img_tensor.numpy()
    except Exception as e:
        raise Exception(f"Error processing {image_path}: {str(e)}")

def process_single_image_onnx(image_path, model_path, metadata, threshold_profile="Overall", 

                           active_threshold=0.35, active_category_thresholds=None, 

                           min_confidence=0.1):
    """

    Process a single image using ONNX model

    

    Args:

        image_path: Path to the image file

        model_path: Path to the ONNX model file

        metadata: Model metadata dictionary

        threshold_profile: The threshold profile being used

        active_threshold: Overall threshold value

        active_category_thresholds: Category-specific thresholds

        min_confidence: Minimum confidence to include in results

        

    Returns:

        Dictionary with tags and probabilities

    """
    import time
    
    try:
        # Create ONNX tagger for this image (or reuse an existing one)
        if hasattr(process_single_image_onnx, 'tagger'):
            tagger = process_single_image_onnx.tagger
        else:
            # Get metadata path from model_path
            metadata_path = model_path.replace('.onnx', '_metadata.json')
            if not os.path.exists(metadata_path):
                metadata_path = model_path.replace('.onnx', '') + '_metadata.json'
                
            # Create new tagger
            tagger = ONNXImageTagger(model_path, metadata_path)
            # Cache it for future calls
            process_single_image_onnx.tagger = tagger
        
        # Preprocess the image
        start_time = time.time()
        img_array = preprocess_image(image_path)
        
        # Run inference
        results = tagger.predict_batch(
            [img_array], 
            threshold=active_threshold,
            category_thresholds=active_category_thresholds,
            min_confidence=min_confidence
        )
        inference_time = time.time() - start_time
        
        if results:
            result = results[0]
            result['inference_time'] = inference_time
            return result
        else:
            return {
                'success': False,
                'error': 'Failed to process image',
                'all_tags': [],
                'all_probs': {},
                'tags': {}
            }
    
    except Exception as e:
        import traceback
        print(f"Error in process_single_image_onnx: {str(e)}")
        traceback.print_exc()
        return {
            'success': False,
            'error': str(e),
            'all_tags': [],
            'all_probs': {},
            'tags': {}
        }

def preprocess_images_parallel(image_paths, image_size=512, max_workers=8):
    """Process multiple images in parallel"""
    processed_images = []
    valid_paths = []
    
    # Define a worker function
    def process_single_image(path):
        try:
            return preprocess_image(path, image_size), path
        except Exception as e:
            print(f"Error processing {path}: {str(e)}")
            return None, path
    
    # Process images in parallel
    with ThreadPoolExecutor(max_workers=max_workers) as executor:
        results = list(executor.map(process_single_image, image_paths))
    
    # Filter results
    for img_array, path in results:
        if img_array is not None:
            processed_images.append(img_array)
            valid_paths.append(path)
    
    return processed_images, valid_paths

def apply_category_limits(result, category_limits):
    """

    Apply category limits to a result dictionary.

    

    Args:

        result: Result dictionary containing tags and all_tags

        category_limits: Dictionary mapping categories to their tag limits

                         (0 = exclude category, -1 = no limit/include all)

        

    Returns:

        Updated result dictionary with limits applied

    """
    if not category_limits or not result['success']:
        return result
    
    # Get the filtered tags
    filtered_tags = result['tags']
    
    # Apply limits to each category
    for category, cat_tags in list(filtered_tags.items()):
        # Get limit for this category, default to -1 (no limit)
        limit = category_limits.get(category, -1)
        
        if limit == 0:
            # Exclude this category entirely
            del filtered_tags[category]
        elif limit > 0 and len(cat_tags) > limit:
            # Limit to top N tags for this category
            filtered_tags[category] = cat_tags[:limit]
    
    # Regenerate all_tags list after applying limits
    all_tags = []
    for category, cat_tags in filtered_tags.items():
        for tag, _ in cat_tags:
            all_tags.append(tag)
    
    # Update the result with limited tags
    result['tags'] = filtered_tags
    result['all_tags'] = all_tags
    
    return result

class ONNXImageTagger:
    """ONNX-based image tagger for fast batch inference"""
    
    def __init__(self, model_path, metadata_path):
        # Load model
        self.model_path = model_path
        try:
            self.session = ort.InferenceSession(
                model_path, 
                providers=['CUDAExecutionProvider', 'CPUExecutionProvider']
            )
            print(f"Using providers: {self.session.get_providers()}")
        except Exception as e:
            print(f"CUDA not available, using CPU: {e}")
            self.session = ort.InferenceSession(
                model_path, 
                providers=['CPUExecutionProvider']
            )
            print(f"Using providers: {self.session.get_providers()}")
        
        # Load metadata
        with open(metadata_path, 'r') as f:
            self.metadata = json.load(f)
            
        # Get input name
        self.input_name = self.session.get_inputs()[0].name
        print(f"Model loaded successfully. Input name: {self.input_name}")
        
    def predict_batch(self, image_arrays, threshold=0.325, category_thresholds=None, min_confidence=0.1):
        """Run batch inference on preprocessed image arrays"""
        # Stack arrays into batch
        batch_input = np.stack(image_arrays)
        
        # Run inference
        start_time = time.time()
        outputs = self.session.run(None, {self.input_name: batch_input})
        inference_time = time.time() - start_time
        print(f"Batch inference completed in {inference_time:.4f} seconds ({inference_time/len(image_arrays):.4f} s/image)")
        
        # Process outputs
        initial_probs = 1.0 / (1.0 + np.exp(-outputs[0]))  # Apply sigmoid
        refined_probs = 1.0 / (1.0 + np.exp(-outputs[1])) if len(outputs) > 1 else initial_probs
        
        # Apply thresholds and extract tags for each image
        batch_results = []
        
        for i in range(refined_probs.shape[0]):
            probs = refined_probs[i]
            
            # Extract and organize all probabilities
            all_probs = {}
            for idx in range(probs.shape[0]):
                prob_value = float(probs[idx])
                if prob_value >= min_confidence:
                    idx_str = str(idx)
                    tag_name = self.metadata['idx_to_tag'].get(idx_str, f"unknown-{idx}")
                    category = self.metadata['tag_to_category'].get(tag_name, "general")
                    
                    if category not in all_probs:
                        all_probs[category] = []
                    
                    all_probs[category].append((tag_name, prob_value))
            
            # Sort tags by probability within each category
            for category in all_probs:
                all_probs[category] = sorted(
                    all_probs[category], 
                    key=lambda x: x[1], 
                    reverse=True
                )
            
            # Get the filtered tags based on the selected threshold
            tags = {}
            for category, cat_tags in all_probs.items():
                # Use category-specific threshold if available
                if category_thresholds and category in category_thresholds:
                    cat_threshold = category_thresholds[category]
                else:
                    cat_threshold = threshold
                    
                tags[category] = [(tag, prob) for tag, prob in cat_tags if prob >= cat_threshold]
            
            # Create a flat list of all tags above threshold
            all_tags = []
            for category, cat_tags in tags.items():
                for tag, _ in cat_tags:
                    all_tags.append(tag)
            
            batch_results.append({
                'tags': tags,
                'all_probs': all_probs,
                'all_tags': all_tags,
                'success': True
            })
            
        return batch_results

def batch_process_images_onnx(folder_path, model_path, metadata_path, threshold_profile, 

                            active_threshold, active_category_thresholds, save_dir=None, 

                            progress_callback=None, min_confidence=0.1, batch_size=16,

                            category_limits=None):
    """

    Process all images in a folder using the ONNX model.

    

    Args:

        folder_path: Path to folder containing images

        model_path: Path to the ONNX model file

        metadata_path: Path to the model metadata file

        threshold_profile: Selected threshold profile

        active_threshold: Overall threshold value

        active_category_thresholds: Category-specific thresholds

        save_dir: Directory to save tag files (if None uses default)

        progress_callback: Optional callback for progress updates

        min_confidence: Minimum confidence threshold

        batch_size: Number of images to process at once

        category_limits: Dictionary mapping categories to their tag limits (0 = unlimited)

        

    Returns:

        Dictionary with results for each image

    """
    from utils.file_utils import save_tags_to_file  # Import here to avoid circular imports
    
    # Find all image files in the folder
    image_extensions = ['*.jpg', '*.jpeg', '*.png']
    image_files = []
    
    for ext in image_extensions:
        image_files.extend(glob.glob(os.path.join(folder_path, ext)))
        image_files.extend(glob.glob(os.path.join(folder_path, ext.upper())))
    # Use a set to remove duplicate files (Windows filesystems are case-insensitive)
    if os.name == 'nt':  # Windows
        # Use lowercase paths for comparison on Windows
        unique_paths = set()
        unique_files = []
        for file_path in image_files:
            normalized_path = os.path.normpath(file_path).lower()
            if normalized_path not in unique_paths:
                unique_paths.add(normalized_path)
                unique_files.append(file_path)
        image_files = unique_files
    
    if not image_files:
        return {
            'success': False,
            'error': f"No images found in {folder_path}",
            'results': {}
        }
    
    # Use the provided save directory or create a default one
    if save_dir is None:
        app_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
        save_dir = os.path.join(app_dir, "saved_tags")
    
    # Ensure the directory exists
    os.makedirs(save_dir, exist_ok=True)
    
    # Create ONNX tagger
    tagger = ONNXImageTagger(model_path, metadata_path)
    
    # Process images in batches
    results = {}
    total_images = len(image_files)
    processed = 0
    
    start_time = time.time()
    
    # Process in batches
    for i in range(0, total_images, batch_size):
        batch_start = time.time()
        
        # Get current batch of images
        batch_files = image_files[i:i+batch_size]
        batch_size_actual = len(batch_files)
        
        # Update progress if callback provided
        if progress_callback:
            progress_callback(processed, total_images, batch_files[0] if batch_files else None)
        
        print(f"Processing batch {i//batch_size + 1}/{(total_images + batch_size - 1)//batch_size}: {batch_size_actual} images")
        
        try:
            # Preprocess images in parallel
            processed_images, valid_paths = preprocess_images_parallel(batch_files)
            
            if processed_images:
                # Run batch prediction
                batch_results = tagger.predict_batch(
                    processed_images, 
                    threshold=active_threshold,
                    category_thresholds=active_category_thresholds,
                    min_confidence=min_confidence
                )
                
            # Process results for each image
            for j, (image_path, result) in enumerate(zip(valid_paths, batch_results)):
                # Update progress if callback provided
                if progress_callback:
                    progress_callback(processed + j, total_images, image_path)
                
                # Debug print to track what's happening
                print(f"Before limiting - Tags for {os.path.basename(image_path)}: {len(result['all_tags'])} tags")
                print(f"Category limits applied: {category_limits}")
                
                # Make sure we apply limits right before saving
                if category_limits and result['success']:
                    # Before counts for debugging
                    before_counts = {cat: len(tags) for cat, tags in result['tags'].items()}
                    
                    # Apply the limits
                    result = apply_category_limits(result, category_limits)
                    
                    # After counts for debugging
                    after_counts = {cat: len(tags) for cat, tags in result['tags'].items()}
                    
                    # Print the effect of limits
                    print(f"Before limits: {before_counts}")
                    print(f"After limits: {after_counts}")
                    print(f"After limiting - Tags for {os.path.basename(image_path)}: {len(result['all_tags'])} tags")
                
                # Save the tags to a file
                if result['success']:
                    output_path = save_tags_to_file(
                        image_path=image_path,
                        all_tags=result['all_tags'],
                        custom_dir=save_dir,
                        overwrite=True
                    )
                    result['output_path'] = str(output_path)
                
                # Store the result
                results[image_path] = result
            
            processed += batch_size_actual
            
            # Calculate batch timing
            batch_end = time.time()
            batch_time = batch_end - batch_start
            print(f"Batch processed in {batch_time:.2f} seconds ({batch_time/batch_size_actual:.2f} seconds per image)")
            
        except Exception as e:
            print(f"Error processing batch: {str(e)}")
            traceback.print_exc()
            
            # Process failed images one by one as fallback
            for image_path in batch_files:
                try:
                    # Update progress if callback provided
                    if progress_callback:
                        progress_callback(processed + j, total_images, image_path)
                    
                    # Debug print to track what's happening
                    print(f"Before limiting - Tags for {os.path.basename(image_path)}: {len(result['all_tags'])} tags")
                    print(f"Category limits applied: {category_limits}")
                    
                    # Make sure we apply limits right before saving
                    if category_limits and result['success']:
                        # Before counts for debugging
                        before_counts = {cat: len(tags) for cat, tags in result['tags'].items()}
                        
                        # Apply the limits
                        result = apply_category_limits(result, category_limits)
                        
                        # After counts for debugging
                        after_counts = {cat: len(tags) for cat, tags in result['tags'].items()}
                        
                        # Print the effect of limits
                        print(f"Before limits: {before_counts}")
                        print(f"After limits: {after_counts}")
                        print(f"After limiting - Tags for {os.path.basename(image_path)}: {len(result['all_tags'])} tags")
                                           
                    # Preprocess single image
                    img_array = preprocess_image(image_path)
                    
                    # Run inference on single image
                    single_results = tagger.predict_batch(
                        [img_array], 
                        threshold=active_threshold,
                        category_thresholds=active_category_thresholds,
                        min_confidence=min_confidence
                    )
                    
                    if single_results:
                        result = single_results[0]
                                            
                    # Save the tags to a file
                    if result['success']:
                        output_path = save_tags_to_file(
                            image_path=image_path,
                            all_tags=result['all_tags'],
                            custom_dir=save_dir,
                            overwrite=True  # Add this to be consistent
                        )
                        result['output_path'] = str(output_path)
                        
                        # Store the result
                        results[image_path] = result
                    else:
                        results[image_path] = {
                            'success': False,
                            'error': 'Failed to process image',
                            'all_tags': []
                        }
                        
                except Exception as img_e:
                    print(f"Error processing single image {image_path}: {str(img_e)}")
                    results[image_path] = {
                        'success': False,
                        'error': str(img_e),
                        'all_tags': []
                    }
                
                processed += 1
    
    # Final progress update
    if progress_callback:
        progress_callback(total_images, total_images, None)
    
    end_time = time.time()
    total_time = end_time - start_time
    print(f"Batch processing finished. Total time: {total_time:.2f} seconds, Average: {total_time/total_images:.2f} seconds per image")
    
    return {
        'success': True,
        'total': total_images,
        'processed': len(results),
        'results': results,
        'save_dir': save_dir,
        'time_elapsed': end_time - start_time
    }