|
# Simple QLoRA Model Inference |
|
|
|
This guide demonstrates how to perform inference using a QLoRA (Quantized Low-Rank Adaptation) fine-tuned model with a single code cell. |
|
|
|
## Requirements |
|
|
|
- Python 3.7+ |
|
- PyTorch |
|
- Transformers |
|
- PEFT (Parameter-Efficient Fine-Tuning) |
|
- bitsandbytes |
|
|
|
Install the required packages: |
|
|
|
``` |
|
pip install torch transformers peft bitsandbytes |
|
``` |
|
|
|
## Inference Code |
|
|
|
Copy and paste the following code into a Python script or Jupyter notebook cell: |
|
|
|
```python |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig |
|
from peft import PeftModel |
|
|
|
# Set up model paths |
|
BASE_MODEL_PATH = "meta-llama/Meta-Llama-3.1-8B-Instruct" |
|
ADAPTER_PATH = "CCRss/Meta-Llama-3.1-8B-Instruct-qlora-nf-ds_oasst1" |
|
|
|
# Load tokenizer |
|
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL_PATH) |
|
tokenizer.pad_token = tokenizer.eos_token |
|
tokenizer.padding_side = "right" |
|
|
|
# Load quantized model with adapter |
|
bnb_config = BitsAndBytesConfig( |
|
load_in_4bit=True, |
|
bnb_4bit_quant_type="nf4", |
|
bnb_4bit_compute_dtype=torch.float16, |
|
) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
BASE_MODEL_PATH, |
|
quantization_config=bnb_config, |
|
device_map="auto" |
|
) |
|
model = PeftModel.from_pretrained(model, ADAPTER_PATH) |
|
|
|
# Generate text |
|
prompt = "Explain quantum computing in simple terms:" |
|
inputs = tokenizer(prompt, return_tensors="pt").to(model.device) |
|
outputs = model.generate(**inputs, max_new_tokens=100, do_sample=True, temperature=0.7) |
|
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
|
|
print(generated_text) |
|
``` |
|
|
|
## Usage |
|
|
|
1. Replace `BASE_MODEL_PATH` with the path to your base model. |
|
2. Replace `ADAPTER_PATH` with the path to your QLoRA adapter. |
|
3. Modify the `prompt` variable to use your desired input text. |
|
4. Run the code cell. |
|
|
|
## Customization |
|
|
|
- Adjust `max_new_tokens`, `temperature`, and other generation parameters in the `model.generate()` function call to control the output. |
|
|
|
## Troubleshooting |
|
|
|
- If you encounter CUDA out-of-memory errors, try reducing `max_new_tokens` or using a smaller model. |
|
- Ensure your GPU drivers and CUDA toolkit are up-to-date. |
|
|
|
For more advanced usage or optimizations, refer to the Hugging Face documentation for Transformers and PEFT. |