|
# Simple QLoRA Model Inference
|
|
|
|
This guide demonstrates how to perform inference using a QLoRA (Quantized Low-Rank Adaptation) fine-tuned model with a single code cell.
|
|
|
|
## Requirements
|
|
|
|
- Python 3.7+
|
|
- PyTorch
|
|
- Transformers
|
|
- PEFT (Parameter-Efficient Fine-Tuning)
|
|
- bitsandbytes
|
|
|
|
Install the required packages:
|
|
|
|
```
|
|
pip install torch transformers peft bitsandbytes
|
|
```
|
|
|
|
## Inference Code
|
|
|
|
Copy and paste the following code into a Python script or Jupyter notebook cell:
|
|
|
|
```python
|
|
import torch
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
|
from peft import PeftModel
|
|
|
|
# Set up model paths
|
|
BASE_MODEL_PATH = "path/to/your/base/model"
|
|
ADAPTER_PATH = "path/to/your/qlora/adapter"
|
|
|
|
# Load tokenizer
|
|
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL_PATH)
|
|
tokenizer.pad_token = tokenizer.eos_token
|
|
tokenizer.padding_side = "right"
|
|
|
|
# Load quantized model with adapter
|
|
bnb_config = BitsAndBytesConfig(
|
|
load_in_4bit=True,
|
|
bnb_4bit_quant_type="nf4",
|
|
bnb_4bit_compute_dtype=torch.float16,
|
|
)
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
BASE_MODEL_PATH,
|
|
quantization_config=bnb_config,
|
|
device_map="auto"
|
|
)
|
|
model = PeftModel.from_pretrained(model, ADAPTER_PATH)
|
|
|
|
# Generate text
|
|
prompt = "Explain quantum computing in simple terms:"
|
|
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
|
outputs = model.generate(**inputs, max_new_tokens=100, do_sample=True, temperature=0.7)
|
|
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
|
print(generated_text)
|
|
```
|
|
|
|
## Usage
|
|
|
|
1. Replace `BASE_MODEL_PATH` with the path to your base model.
|
|
2. Replace `ADAPTER_PATH` with the path to your QLoRA adapter.
|
|
3. Modify the `prompt` variable to use your desired input text.
|
|
4. Run the code cell.
|
|
|
|
## Customization
|
|
|
|
- Adjust `max_new_tokens`, `temperature`, and other generation parameters in the `model.generate()` function call to control the output.
|
|
|
|
## Troubleshooting
|
|
|
|
- If you encounter CUDA out-of-memory errors, try reducing `max_new_tokens` or using a smaller model.
|
|
- Ensure your GPU drivers and CUDA toolkit are up-to-date.
|
|
|
|
For more advanced usage or optimizations, refer to the Hugging Face documentation for Transformers and PEFT. |