|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: vowelizer_1203_v12 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# vowelizer_1203_v12 |
|
|
|
This model is a fine-tuned version of [Buseak/vowelizer_1203_v11](https://huggingface.co/Buseak/vowelizer_1203_v11) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0000 |
|
- Precision: 1.0000 |
|
- Recall: 1.0000 |
|
- F1: 1.0000 |
|
- Accuracy: 1.0000 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 20 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 0.0493 | 1.0 | 967 | 0.0219 | 0.9936 | 0.9889 | 0.9913 | 0.9943 | |
|
| 0.0299 | 2.0 | 1934 | 0.0112 | 0.9964 | 0.9952 | 0.9958 | 0.9971 | |
|
| 0.0197 | 3.0 | 2901 | 0.0064 | 0.9980 | 0.9972 | 0.9976 | 0.9984 | |
|
| 0.0143 | 4.0 | 3868 | 0.0039 | 0.9988 | 0.9984 | 0.9986 | 0.9990 | |
|
| 0.0113 | 5.0 | 4835 | 0.0025 | 0.9990 | 0.9990 | 0.9990 | 0.9994 | |
|
| 0.0094 | 6.0 | 5802 | 0.0017 | 0.9993 | 0.9993 | 0.9993 | 0.9996 | |
|
| 0.0074 | 7.0 | 6769 | 0.0013 | 0.9993 | 0.9994 | 0.9994 | 0.9997 | |
|
| 0.0063 | 8.0 | 7736 | 0.0007 | 0.9997 | 0.9996 | 0.9997 | 0.9998 | |
|
| 0.0055 | 9.0 | 8703 | 0.0006 | 0.9997 | 0.9998 | 0.9997 | 0.9999 | |
|
| 0.0045 | 10.0 | 9670 | 0.0004 | 0.9997 | 0.9998 | 0.9998 | 0.9999 | |
|
| 0.0039 | 11.0 | 10637 | 0.0003 | 0.9998 | 0.9999 | 0.9999 | 0.9999 | |
|
| 0.0031 | 12.0 | 11604 | 0.0002 | 0.9999 | 0.9999 | 0.9999 | 1.0000 | |
|
| 0.0028 | 13.0 | 12571 | 0.0002 | 0.9999 | 0.9999 | 0.9999 | 1.0000 | |
|
| 0.0023 | 14.0 | 13538 | 0.0001 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | |
|
| 0.002 | 15.0 | 14505 | 0.0001 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | |
|
| 0.0019 | 16.0 | 15472 | 0.0001 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | |
|
| 0.0017 | 17.0 | 16439 | 0.0001 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | |
|
| 0.0014 | 18.0 | 17406 | 0.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | |
|
| 0.0013 | 19.0 | 18373 | 0.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | |
|
| 0.0011 | 20.0 | 19340 | 0.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.28.0 |
|
- Pytorch 2.2.1+cu121 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.13.3 |
|
|