distilhubert-finetuned-gtzan

This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6073
  • Accuracy: 0.84

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.9996 1.0 113 1.7954 0.57
1.3157 2.0 226 1.2129 0.67
0.9375 3.0 339 0.9223 0.76
0.817 4.0 452 0.8372 0.73
0.5425 5.0 565 0.7206 0.74
0.4381 6.0 678 0.6317 0.78
0.5359 7.0 791 0.5468 0.84
0.2037 8.0 904 0.5492 0.84
0.3028 9.0 1017 0.5550 0.8
0.1674 10.0 1130 0.6073 0.84

Framework versions

  • Transformers 4.34.0.dev0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
164
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for Bolakubus/distilhubert-finetuned-gtzan

Finetuned
(436)
this model
Finetunes
1 model

Dataset used to train Bolakubus/distilhubert-finetuned-gtzan

Evaluation results