SentenceTransformer based on answerdotai/ModernBERT-large
This is a sentence-transformers model finetuned from answerdotai/ModernBERT-large. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: answerdotai/ModernBERT-large
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 1024 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: ModernBertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("BlackBeenie/ModernBERT-large-msmarco-v3-bpr")
# Run inference
sentences = [
'what county is phillips wi',
'Phillips is a city in Price County, Wisconsin, United States. The population was 1,675 at the 2000 census. It is the county seat of Price County. Phillips is located at 45°41â\x80²30â\x80³N 90°24â\x80²7â\x80³W / 45.69167°N 90.40194°W / 45.69167; -90.40194 (45.691560, -90.401915). It is on highway SR 13, 77 miles north of Marshfield, and 74 miles south of Ashland.',
"Motto: It's not what you show, it's what you grow.. Location within Phillips County and Colorado. Holyoke is the Home Rule Municipality that is the county seat and the most populous municipality of Phillips County, Colorado, United States. The city population was 2,313 at the 2010 census.",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 498,970 training samples
- Columns:
sentence_0
,sentence_1
, andsentence_2
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 sentence_2 type string string string details - min: 4 tokens
- mean: 9.24 tokens
- max: 27 tokens
- min: 23 tokens
- mean: 83.71 tokens
- max: 279 tokens
- min: 16 tokens
- mean: 80.18 tokens
- max: 262 tokens
- Samples:
sentence_0 sentence_1 sentence_2 what is tongkat ali
Tongkat Ali is a very powerful herb that acts as a sex enhancer by naturally increasing the testosterone levels, and revitalizing sexual impotence, performance and pleasure. Tongkat Ali is also effective in building muscular volume & strength resulting to a healthy physique.
However, unlike tongkat ali extract, tongkat ali chipped root and root powder are not sterile. Thus, the raw consumption of root powder is not recommended. The traditional preparation in Indonesia and Malaysia is to boil chipped roots as a tea.
cost to install engineered hardwood flooring
Burton says his customers typically spend about $8 per square foot for engineered hardwood flooring; add an additional $2 per square foot for installation. Minion says consumers should expect to pay $7 to $12 per square foot for quality hardwood flooring. âIf the homeowner buys the wood and you need somebody to install it, usually an installation goes for about $2 a square foot,â Bill LeBeau, owner of LeBeauâs Hardwood Floors of Huntersville, North Carolina, says.
Engineered Wood Flooring Installation - Average Cost Per Square Foot. Expect to pay in the higher end of the price range for a licensed, insured and reputable pro - and for complex or rush projects. To lower Engineered Wood Flooring Installation costs: combine related projects, minimize options/extras and be flexible about project scheduling.
define pollute
pollutes; polluted; polluting. Learner's definition of POLLUTE. [+ object] : to make (land, water, air, etc.) dirty and not safe or suitable to use. Waste from the factory had polluted [=contaminated] the river. Miles of beaches were polluted by the oil spill. Car exhaust pollutes the air.
Chemical water pollution. Industrial and agricultural work involves the use of many different chemicals that can run-off into water and pollute it.1 Metals and solvents from industrial work can pollute rivers and lakes.2 These are poisonous to many forms of aquatic life and may slow their development, make them infertile or even result in death.ndustrial and agricultural work involves the use of many different chemicals that can run-off into water and pollute it. 1 Metals and solvents from industrial work can pollute rivers and lakes.
- Loss:
beir.losses.bpr_loss.BPRLoss
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 64per_device_eval_batch_size
: 64num_train_epochs
: 6multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 64per_device_eval_batch_size
: 64per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 6max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | Training Loss |
---|---|---|
0.0641 | 500 | 1.4036 |
0.1283 | 1000 | 0.36 |
0.1924 | 1500 | 0.3305 |
0.2565 | 2000 | 0.2874 |
0.3206 | 2500 | 0.2732 |
0.3848 | 3000 | 0.2446 |
0.4489 | 3500 | 0.2399 |
0.5130 | 4000 | 0.2302 |
0.5771 | 4500 | 0.231 |
0.6413 | 5000 | 0.2217 |
0.7054 | 5500 | 0.2192 |
0.7695 | 6000 | 0.2087 |
0.8337 | 6500 | 0.2104 |
0.8978 | 7000 | 0.2069 |
0.9619 | 7500 | 0.2071 |
1.0 | 7797 | - |
1.0260 | 8000 | 0.1663 |
1.0902 | 8500 | 0.1213 |
1.1543 | 9000 | 0.1266 |
1.2184 | 9500 | 0.1217 |
1.2825 | 10000 | 0.1193 |
1.3467 | 10500 | 0.1198 |
1.4108 | 11000 | 0.1258 |
1.4749 | 11500 | 0.1266 |
1.5391 | 12000 | 0.1334 |
1.6032 | 12500 | 0.1337 |
1.6673 | 13000 | 0.1258 |
1.7314 | 13500 | 0.1268 |
1.7956 | 14000 | 0.1249 |
1.8597 | 14500 | 0.1256 |
1.9238 | 15000 | 0.1238 |
1.9879 | 15500 | 0.1274 |
2.0 | 15594 | - |
2.0521 | 16000 | 0.0776 |
2.1162 | 16500 | 0.0615 |
2.1803 | 17000 | 0.0647 |
2.2445 | 17500 | 0.0651 |
2.3086 | 18000 | 0.0695 |
2.3727 | 18500 | 0.0685 |
2.4368 | 19000 | 0.0685 |
2.5010 | 19500 | 0.0707 |
2.5651 | 20000 | 0.073 |
2.6292 | 20500 | 0.0696 |
2.6933 | 21000 | 0.0694 |
2.7575 | 21500 | 0.0701 |
2.8216 | 22000 | 0.0668 |
2.8857 | 22500 | 0.07 |
2.9499 | 23000 | 0.0649 |
3.0 | 23391 | - |
3.0140 | 23500 | 0.0589 |
3.0781 | 24000 | 0.0316 |
3.1422 | 24500 | 0.0377 |
3.2064 | 25000 | 0.039 |
3.2705 | 25500 | 0.0335 |
3.3346 | 26000 | 0.0387 |
3.3987 | 26500 | 0.0367 |
3.4629 | 27000 | 0.0383 |
3.5270 | 27500 | 0.0407 |
3.5911 | 28000 | 0.0372 |
3.6553 | 28500 | 0.0378 |
3.7194 | 29000 | 0.0359 |
3.7835 | 29500 | 0.0394 |
3.8476 | 30000 | 0.0388 |
3.9118 | 30500 | 0.0422 |
3.9759 | 31000 | 0.0391 |
4.0 | 31188 | - |
4.0400 | 31500 | 0.0251 |
4.1041 | 32000 | 0.0199 |
4.1683 | 32500 | 0.0261 |
4.2324 | 33000 | 0.021 |
4.2965 | 33500 | 0.0196 |
4.3607 | 34000 | 0.0181 |
4.4248 | 34500 | 0.0228 |
4.4889 | 35000 | 0.0195 |
4.5530 | 35500 | 0.02 |
4.6172 | 36000 | 0.0251 |
4.6813 | 36500 | 0.0213 |
4.7454 | 37000 | 0.0208 |
4.8095 | 37500 | 0.0192 |
4.8737 | 38000 | 0.0204 |
4.9378 | 38500 | 0.0176 |
5.0 | 38985 | - |
5.0019 | 39000 | 0.0184 |
5.0661 | 39500 | 0.0136 |
5.1302 | 40000 | 0.0102 |
5.1943 | 40500 | 0.0122 |
5.2584 | 41000 | 0.0124 |
5.3226 | 41500 | 0.013 |
5.3867 | 42000 | 0.0105 |
5.4508 | 42500 | 0.0135 |
5.5149 | 43000 | 0.0158 |
5.5791 | 43500 | 0.015 |
5.6432 | 44000 | 0.0128 |
5.7073 | 44500 | 0.0105 |
5.7715 | 45000 | 0.014 |
5.8356 | 45500 | 0.0125 |
5.8997 | 46000 | 0.0139 |
5.9638 | 46500 | 0.0137 |
6.0 | 46782 | - |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.3.1
- Transformers: 4.48.0.dev0
- PyTorch: 2.5.1+cu121
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 24
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for BlackBeenie/ModernBERT-large-msmarco-v3-bpr
Base model
answerdotai/ModernBERT-large