BilalMuftuoglu's picture
End of training
7f0ddd1 verified
metadata
license: apache-2.0
base_model: facebook/deit-base-distilled-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: deit-base-distilled-patch16-224-hasta-65-fold1
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.6388888888888888

deit-base-distilled-patch16-224-hasta-65-fold1

This model is a fine-tuned version of facebook/deit-base-distilled-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9265
  • Accuracy: 0.6389

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.5714 1 1.3178 0.2222
No log 1.7143 3 1.4014 0.2778
No log 2.8571 5 1.3535 0.2778
No log 4.0 7 1.1299 0.3056
No log 4.5714 8 1.0860 0.4722
1.0868 5.7143 10 1.1121 0.3333
1.0868 6.8571 12 1.0691 0.3611
1.0868 8.0 14 1.0270 0.5
1.0868 8.5714 15 1.0360 0.5
1.0868 9.7143 17 1.0385 0.3889
1.0868 10.8571 19 0.9951 0.4167
0.9487 12.0 21 1.0029 0.4444
0.9487 12.5714 22 1.0134 0.4722
0.9487 13.7143 24 0.9599 0.4444
0.9487 14.8571 26 0.9117 0.5278
0.9487 16.0 28 0.8856 0.5278
0.9487 16.5714 29 0.9275 0.4722
0.7942 17.7143 31 0.9041 0.5278
0.7942 18.8571 33 0.8999 0.4722
0.7942 20.0 35 0.8832 0.5833
0.7942 20.5714 36 0.8864 0.5556
0.7942 21.7143 38 0.8551 0.5
0.5911 22.8571 40 0.8242 0.6111
0.5911 24.0 42 0.9265 0.6389
0.5911 24.5714 43 0.8674 0.5833
0.5911 25.7143 45 0.7892 0.5556
0.5911 26.8571 47 0.8005 0.5833
0.5911 28.0 49 0.8302 0.5833
0.4865 28.5714 50 0.8893 0.6111
0.4865 29.7143 52 0.9043 0.6111
0.4865 30.8571 54 0.8433 0.5833
0.4865 32.0 56 0.8677 0.5833
0.4865 32.5714 57 0.9008 0.5833
0.4865 33.7143 59 0.9533 0.6111
0.4007 34.8571 61 0.9175 0.6111
0.4007 36.0 63 0.9090 0.5833
0.4007 36.5714 64 1.0004 0.5
0.4007 37.7143 66 1.0393 0.5
0.4007 38.8571 68 0.9196 0.5833
0.3691 40.0 70 0.9505 0.6389
0.3691 40.5714 71 0.9634 0.6389
0.3691 41.7143 73 0.9718 0.5278
0.3691 42.8571 75 0.9257 0.5278
0.3691 44.0 77 0.9020 0.5
0.3691 44.5714 78 0.9132 0.5556
0.3278 45.7143 80 1.0340 0.5556
0.3278 46.8571 82 1.0933 0.5833
0.3278 48.0 84 1.0231 0.5
0.3278 48.5714 85 0.9826 0.5278
0.3278 49.7143 87 0.9329 0.5278
0.3278 50.8571 89 0.9280 0.5278
0.2909 52.0 91 0.9312 0.5556
0.2909 52.5714 92 0.9359 0.5556
0.2909 53.7143 94 0.9495 0.5833
0.2909 54.8571 96 0.9607 0.5833
0.2909 56.0 98 0.9685 0.5833
0.2909 56.5714 99 0.9703 0.5833
0.2697 57.1429 100 0.9713 0.5833

Framework versions

  • Transformers 4.41.0
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1