metadata
license: apache-2.0
base_model: facebook/deit-base-distilled-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: deit-base-distilled-patch16-224-hasta-65-fold1
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.6388888888888888
deit-base-distilled-patch16-224-hasta-65-fold1
This model is a fine-tuned version of facebook/deit-base-distilled-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.9265
- Accuracy: 0.6389
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 0.5714 | 1 | 1.3178 | 0.2222 |
No log | 1.7143 | 3 | 1.4014 | 0.2778 |
No log | 2.8571 | 5 | 1.3535 | 0.2778 |
No log | 4.0 | 7 | 1.1299 | 0.3056 |
No log | 4.5714 | 8 | 1.0860 | 0.4722 |
1.0868 | 5.7143 | 10 | 1.1121 | 0.3333 |
1.0868 | 6.8571 | 12 | 1.0691 | 0.3611 |
1.0868 | 8.0 | 14 | 1.0270 | 0.5 |
1.0868 | 8.5714 | 15 | 1.0360 | 0.5 |
1.0868 | 9.7143 | 17 | 1.0385 | 0.3889 |
1.0868 | 10.8571 | 19 | 0.9951 | 0.4167 |
0.9487 | 12.0 | 21 | 1.0029 | 0.4444 |
0.9487 | 12.5714 | 22 | 1.0134 | 0.4722 |
0.9487 | 13.7143 | 24 | 0.9599 | 0.4444 |
0.9487 | 14.8571 | 26 | 0.9117 | 0.5278 |
0.9487 | 16.0 | 28 | 0.8856 | 0.5278 |
0.9487 | 16.5714 | 29 | 0.9275 | 0.4722 |
0.7942 | 17.7143 | 31 | 0.9041 | 0.5278 |
0.7942 | 18.8571 | 33 | 0.8999 | 0.4722 |
0.7942 | 20.0 | 35 | 0.8832 | 0.5833 |
0.7942 | 20.5714 | 36 | 0.8864 | 0.5556 |
0.7942 | 21.7143 | 38 | 0.8551 | 0.5 |
0.5911 | 22.8571 | 40 | 0.8242 | 0.6111 |
0.5911 | 24.0 | 42 | 0.9265 | 0.6389 |
0.5911 | 24.5714 | 43 | 0.8674 | 0.5833 |
0.5911 | 25.7143 | 45 | 0.7892 | 0.5556 |
0.5911 | 26.8571 | 47 | 0.8005 | 0.5833 |
0.5911 | 28.0 | 49 | 0.8302 | 0.5833 |
0.4865 | 28.5714 | 50 | 0.8893 | 0.6111 |
0.4865 | 29.7143 | 52 | 0.9043 | 0.6111 |
0.4865 | 30.8571 | 54 | 0.8433 | 0.5833 |
0.4865 | 32.0 | 56 | 0.8677 | 0.5833 |
0.4865 | 32.5714 | 57 | 0.9008 | 0.5833 |
0.4865 | 33.7143 | 59 | 0.9533 | 0.6111 |
0.4007 | 34.8571 | 61 | 0.9175 | 0.6111 |
0.4007 | 36.0 | 63 | 0.9090 | 0.5833 |
0.4007 | 36.5714 | 64 | 1.0004 | 0.5 |
0.4007 | 37.7143 | 66 | 1.0393 | 0.5 |
0.4007 | 38.8571 | 68 | 0.9196 | 0.5833 |
0.3691 | 40.0 | 70 | 0.9505 | 0.6389 |
0.3691 | 40.5714 | 71 | 0.9634 | 0.6389 |
0.3691 | 41.7143 | 73 | 0.9718 | 0.5278 |
0.3691 | 42.8571 | 75 | 0.9257 | 0.5278 |
0.3691 | 44.0 | 77 | 0.9020 | 0.5 |
0.3691 | 44.5714 | 78 | 0.9132 | 0.5556 |
0.3278 | 45.7143 | 80 | 1.0340 | 0.5556 |
0.3278 | 46.8571 | 82 | 1.0933 | 0.5833 |
0.3278 | 48.0 | 84 | 1.0231 | 0.5 |
0.3278 | 48.5714 | 85 | 0.9826 | 0.5278 |
0.3278 | 49.7143 | 87 | 0.9329 | 0.5278 |
0.3278 | 50.8571 | 89 | 0.9280 | 0.5278 |
0.2909 | 52.0 | 91 | 0.9312 | 0.5556 |
0.2909 | 52.5714 | 92 | 0.9359 | 0.5556 |
0.2909 | 53.7143 | 94 | 0.9495 | 0.5833 |
0.2909 | 54.8571 | 96 | 0.9607 | 0.5833 |
0.2909 | 56.0 | 98 | 0.9685 | 0.5833 |
0.2909 | 56.5714 | 99 | 0.9703 | 0.5833 |
0.2697 | 57.1429 | 100 | 0.9713 | 0.5833 |
Framework versions
- Transformers 4.41.0
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1