deit-base-distilled-patch16-224-55-fold5

This model is a fine-tuned version of facebook/deit-base-distilled-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6452
  • Accuracy: 0.8228

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.8571 3 0.7319 0.5190
No log 2.0 7 0.6756 0.5696
0.6544 2.8571 10 0.6199 0.6456
0.6544 4.0 14 0.5987 0.6203
0.6544 4.8571 17 0.5676 0.6709
0.6173 6.0 21 0.6543 0.5823
0.6173 6.8571 24 0.5310 0.7342
0.6173 8.0 28 0.6724 0.6076
0.5245 8.8571 31 0.6444 0.6582
0.5245 10.0 35 0.5027 0.7342
0.5245 10.8571 38 0.6328 0.6582
0.4554 12.0 42 0.4883 0.7595
0.4554 12.8571 45 0.6736 0.6582
0.4554 14.0 49 0.4584 0.7342
0.4575 14.8571 52 0.8099 0.6456
0.4575 16.0 56 0.4767 0.7468
0.4575 16.8571 59 0.6059 0.6835
0.3798 18.0 63 0.4863 0.7595
0.3798 18.8571 66 0.5636 0.7468
0.3419 20.0 70 0.4677 0.7342
0.3419 20.8571 73 0.4883 0.7089
0.3419 22.0 77 0.5549 0.7215
0.3079 22.8571 80 0.4324 0.7848
0.3079 24.0 84 0.6184 0.6709
0.3079 24.8571 87 0.6149 0.7089
0.2616 26.0 91 0.4488 0.7848
0.2616 26.8571 94 0.4368 0.7722
0.2616 28.0 98 0.4566 0.7722
0.2157 28.8571 101 0.4657 0.7848
0.2157 30.0 105 0.4514 0.7722
0.2157 30.8571 108 0.5083 0.7848
0.2258 32.0 112 0.5261 0.7848
0.2258 32.8571 115 0.5567 0.7595
0.2258 34.0 119 0.5566 0.8101
0.1972 34.8571 122 0.5495 0.8101
0.1972 36.0 126 0.4992 0.7975
0.1972 36.8571 129 0.5661 0.7595
0.1709 38.0 133 0.7326 0.7342
0.1709 38.8571 136 0.5635 0.8101
0.1537 40.0 140 0.8130 0.7468
0.1537 40.8571 143 0.6984 0.7848
0.1537 42.0 147 0.7777 0.7595
0.1687 42.8571 150 0.6452 0.8228
0.1687 44.0 154 0.8527 0.7215
0.1687 44.8571 157 0.6483 0.7975
0.1588 46.0 161 0.8185 0.7342
0.1588 46.8571 164 0.6821 0.7722
0.1588 48.0 168 0.7594 0.7342
0.144 48.8571 171 1.0232 0.7595
0.144 50.0 175 0.6178 0.7848
0.144 50.8571 178 0.6243 0.7595
0.1449 52.0 182 0.8159 0.7342
0.1449 52.8571 185 0.6664 0.7722
0.1449 54.0 189 0.7070 0.7342
0.144 54.8571 192 0.7361 0.7468
0.144 56.0 196 0.6656 0.7595
0.144 56.8571 199 0.7487 0.7468
0.1199 58.0 203 0.7993 0.7342
0.1199 58.8571 206 0.7426 0.7722
0.1258 60.0 210 0.7531 0.7975
0.1258 60.8571 213 0.7388 0.7848
0.1258 62.0 217 0.7395 0.7975
0.1392 62.8571 220 0.8238 0.7468
0.1392 64.0 224 0.9302 0.7215
0.1392 64.8571 227 0.7539 0.7722
0.1303 66.0 231 0.6739 0.8101
0.1303 66.8571 234 0.6627 0.7848
0.1303 68.0 238 0.6403 0.7848
0.1423 68.8571 241 0.6379 0.7975
0.1423 70.0 245 0.7658 0.7595
0.1423 70.8571 248 0.9195 0.7342
0.1019 72.0 252 0.7287 0.7722
0.1019 72.8571 255 0.6548 0.7975
0.1019 74.0 259 0.6534 0.7848
0.1286 74.8571 262 0.7331 0.7848
0.1286 76.0 266 0.7845 0.7595
0.1286 76.8571 269 0.7188 0.7975
0.1054 78.0 273 0.6595 0.7722
0.1054 78.8571 276 0.6623 0.7722
0.1053 80.0 280 0.7337 0.7722
0.1053 80.8571 283 0.8085 0.7468
0.1053 82.0 287 0.8201 0.7468
0.1086 82.8571 290 0.7947 0.7468
0.1086 84.0 294 0.7669 0.7722
0.1086 84.8571 297 0.7582 0.7595
0.1186 85.7143 300 0.7541 0.7595

Framework versions

  • Transformers 4.41.0
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
16
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for BilalMuftuoglu/deit-base-distilled-patch16-224-55-fold5

Finetuned
(73)
this model

Evaluation results