metadata
license: apache-2.0
base_model: facebook/deit-base-distilled-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: deit-base-distilled-patch16-224-55-fold3
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.8227848101265823
deit-base-distilled-patch16-224-55-fold3
This model is a fine-tuned version of facebook/deit-base-distilled-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.4529
- Accuracy: 0.8228
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 0.8571 | 3 | 0.8367 | 0.4051 |
No log | 2.0 | 7 | 0.7223 | 0.4557 |
0.7025 | 2.8571 | 10 | 0.7199 | 0.4684 |
0.7025 | 4.0 | 14 | 0.6096 | 0.7089 |
0.7025 | 4.8571 | 17 | 0.6278 | 0.5823 |
0.6356 | 6.0 | 21 | 0.5629 | 0.7089 |
0.6356 | 6.8571 | 24 | 0.5924 | 0.6835 |
0.6356 | 8.0 | 28 | 0.5365 | 0.7722 |
0.5493 | 8.8571 | 31 | 0.6082 | 0.6329 |
0.5493 | 10.0 | 35 | 0.7239 | 0.5949 |
0.5493 | 10.8571 | 38 | 0.5435 | 0.7722 |
0.5205 | 12.0 | 42 | 0.8530 | 0.5570 |
0.5205 | 12.8571 | 45 | 0.5530 | 0.6709 |
0.5205 | 14.0 | 49 | 0.4728 | 0.7722 |
0.4979 | 14.8571 | 52 | 0.9571 | 0.5570 |
0.4979 | 16.0 | 56 | 0.5193 | 0.7722 |
0.4979 | 16.8571 | 59 | 0.4529 | 0.8228 |
0.4957 | 18.0 | 63 | 0.4686 | 0.7975 |
0.4957 | 18.8571 | 66 | 0.5060 | 0.7722 |
0.3659 | 20.0 | 70 | 0.4821 | 0.7848 |
0.3659 | 20.8571 | 73 | 0.6116 | 0.7089 |
0.3659 | 22.0 | 77 | 0.5860 | 0.7215 |
0.2973 | 22.8571 | 80 | 0.7100 | 0.7089 |
0.2973 | 24.0 | 84 | 0.6446 | 0.7342 |
0.2973 | 24.8571 | 87 | 0.6294 | 0.7342 |
0.2647 | 26.0 | 91 | 0.5988 | 0.7342 |
0.2647 | 26.8571 | 94 | 0.5256 | 0.7342 |
0.2647 | 28.0 | 98 | 0.6628 | 0.7595 |
0.2527 | 28.8571 | 101 | 0.5054 | 0.7595 |
0.2527 | 30.0 | 105 | 0.7632 | 0.7595 |
0.2527 | 30.8571 | 108 | 0.5917 | 0.7848 |
0.2176 | 32.0 | 112 | 0.5293 | 0.7848 |
0.2176 | 32.8571 | 115 | 0.6048 | 0.7468 |
0.2176 | 34.0 | 119 | 0.5710 | 0.7468 |
0.1633 | 34.8571 | 122 | 0.5901 | 0.7595 |
0.1633 | 36.0 | 126 | 0.8161 | 0.7468 |
0.1633 | 36.8571 | 129 | 0.7202 | 0.7468 |
0.1753 | 38.0 | 133 | 0.8239 | 0.7215 |
0.1753 | 38.8571 | 136 | 0.8908 | 0.7215 |
0.1743 | 40.0 | 140 | 0.8519 | 0.7342 |
0.1743 | 40.8571 | 143 | 1.0071 | 0.7215 |
0.1743 | 42.0 | 147 | 0.7842 | 0.7342 |
0.1532 | 42.8571 | 150 | 0.7827 | 0.7089 |
0.1532 | 44.0 | 154 | 0.7150 | 0.7468 |
0.1532 | 44.8571 | 157 | 0.6905 | 0.7595 |
0.1526 | 46.0 | 161 | 0.9260 | 0.7089 |
0.1526 | 46.8571 | 164 | 0.7933 | 0.7595 |
0.1526 | 48.0 | 168 | 0.8580 | 0.7468 |
0.1519 | 48.8571 | 171 | 0.6899 | 0.7975 |
0.1519 | 50.0 | 175 | 0.7069 | 0.7848 |
0.1519 | 50.8571 | 178 | 0.6741 | 0.7595 |
0.1292 | 52.0 | 182 | 0.7183 | 0.7848 |
0.1292 | 52.8571 | 185 | 0.8051 | 0.7468 |
0.1292 | 54.0 | 189 | 0.6883 | 0.7722 |
0.1305 | 54.8571 | 192 | 0.8266 | 0.7468 |
0.1305 | 56.0 | 196 | 1.0871 | 0.7595 |
0.1305 | 56.8571 | 199 | 0.7595 | 0.7595 |
0.1129 | 58.0 | 203 | 0.6880 | 0.7595 |
0.1129 | 58.8571 | 206 | 1.0676 | 0.7595 |
0.1369 | 60.0 | 210 | 0.8078 | 0.7595 |
0.1369 | 60.8571 | 213 | 0.7850 | 0.7595 |
0.1369 | 62.0 | 217 | 0.6975 | 0.7722 |
0.127 | 62.8571 | 220 | 0.7212 | 0.7595 |
0.127 | 64.0 | 224 | 0.8967 | 0.7468 |
0.127 | 64.8571 | 227 | 1.0046 | 0.7595 |
0.1238 | 66.0 | 231 | 0.8611 | 0.7342 |
0.1238 | 66.8571 | 234 | 0.9676 | 0.7975 |
0.1238 | 68.0 | 238 | 1.3115 | 0.7215 |
0.1068 | 68.8571 | 241 | 1.0992 | 0.7468 |
0.1068 | 70.0 | 245 | 0.8765 | 0.7848 |
0.1068 | 70.8571 | 248 | 0.8510 | 0.7848 |
0.1019 | 72.0 | 252 | 0.7403 | 0.7975 |
0.1019 | 72.8571 | 255 | 0.7459 | 0.7975 |
0.1019 | 74.0 | 259 | 0.7705 | 0.7975 |
0.1002 | 74.8571 | 262 | 0.7535 | 0.7975 |
0.1002 | 76.0 | 266 | 0.7124 | 0.7722 |
0.1002 | 76.8571 | 269 | 0.7014 | 0.7342 |
0.1222 | 78.0 | 273 | 0.8068 | 0.7722 |
0.1222 | 78.8571 | 276 | 0.9451 | 0.7722 |
0.1091 | 80.0 | 280 | 1.0048 | 0.7848 |
0.1091 | 80.8571 | 283 | 0.9518 | 0.7722 |
0.1091 | 82.0 | 287 | 0.8575 | 0.7848 |
0.0957 | 82.8571 | 290 | 0.8441 | 0.7848 |
0.0957 | 84.0 | 294 | 0.8602 | 0.7848 |
0.0957 | 84.8571 | 297 | 0.8701 | 0.7848 |
0.1111 | 85.7143 | 300 | 0.8731 | 0.7848 |
Framework versions
- Transformers 4.41.0
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1