new_model / README.md
BenjaminKUL's picture
End of training
619760b
|
raw
history blame
7.83 kB
metadata
license: mit
tags:
  - generated_from_trainer
datasets:
  - funsd-layoutlmv3
model-index:
  - name: new_model
    results: []

new_model

This model is a fine-tuned version of SCUT-DLVCLab/lilt-roberta-en-base on the funsd-layoutlmv3 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5095
  • Answer: {'precision': 0.8368479467258602, 'recall': 0.9228886168910648, 'f1': 0.8777648428405123, 'number': 817}
  • Header: {'precision': 0.5333333333333333, 'recall': 0.5378151260504201, 'f1': 0.5355648535564853, 'number': 119}
  • Question: {'precision': 0.8907407407407407, 'recall': 0.89322191272052, 'f1': 0.8919796012980993, 'number': 1077}
  • Overall Precision: 0.8472
  • Overall Recall: 0.8843
  • Overall F1: 0.8653
  • Overall Accuracy: 0.7922

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 2500

Training results

Training Loss Epoch Step Validation Loss Answer Header Question Overall Precision Overall Recall Overall F1 Overall Accuracy
0.1542 3.51 200 0.2369 {'precision': 0.7753846153846153, 'recall': 0.9253365973072215, 'f1': 0.8437500000000001, 'number': 817} {'precision': 0.4166666666666667, 'recall': 0.21008403361344538, 'f1': 0.2793296089385475, 'number': 119} {'precision': 0.8449744463373083, 'recall': 0.9210770659238626, 'f1': 0.8813860506441582, 'number': 1077} 0.8026 0.8808 0.8399 0.7940
0.0493 7.02 400 0.2901 {'precision': 0.8056133056133056, 'recall': 0.9485924112607099, 'f1': 0.8712759977515458, 'number': 817} {'precision': 0.45614035087719296, 'recall': 0.4369747899159664, 'f1': 0.44635193133047213, 'number': 119} {'precision': 0.888673765730881, 'recall': 0.8523676880222841, 'f1': 0.8701421800947867, 'number': 1077} 0.8274 0.8669 0.8467 0.8010
0.0214 10.53 600 0.3571 {'precision': 0.8139013452914798, 'recall': 0.8886168910648715, 'f1': 0.8496196606202459, 'number': 817} {'precision': 0.4186046511627907, 'recall': 0.6050420168067226, 'f1': 0.4948453608247423, 'number': 119} {'precision': 0.8652946679139383, 'recall': 0.8588672237697307, 'f1': 0.8620689655172413, 'number': 1077} 0.8078 0.8559 0.8312 0.7907
0.0112 14.04 800 0.4018 {'precision': 0.8484455958549223, 'recall': 0.8017135862913096, 'f1': 0.8244178728760226, 'number': 817} {'precision': 0.45, 'recall': 0.6050420168067226, 'f1': 0.5161290322580645, 'number': 119} {'precision': 0.8385689354275742, 'recall': 0.8922934076137419, 'f1': 0.8645973909131804, 'number': 1077} 0.8123 0.8385 0.8252 0.7872
0.0058 17.54 1000 0.4571 {'precision': 0.8466666666666667, 'recall': 0.9326805385556916, 'f1': 0.8875946418171229, 'number': 817} {'precision': 0.6621621621621622, 'recall': 0.4117647058823529, 'f1': 0.5077720207253885, 'number': 119} {'precision': 0.8809738503155996, 'recall': 0.9071494893221913, 'f1': 0.8938700823421775, 'number': 1077} 0.8584 0.8882 0.8730 0.7944
0.0031 21.05 1200 0.4573 {'precision': 0.8208469055374593, 'recall': 0.9253365973072215, 'f1': 0.8699654775604143, 'number': 817} {'precision': 0.5727272727272728, 'recall': 0.5294117647058824, 'f1': 0.5502183406113538, 'number': 119} {'precision': 0.8799266727772685, 'recall': 0.8913649025069638, 'f1': 0.8856088560885608, 'number': 1077} 0.8384 0.8838 0.8605 0.7891
0.0019 24.56 1400 0.4631 {'precision': 0.8372352285395763, 'recall': 0.9192166462668299, 'f1': 0.8763127187864644, 'number': 817} {'precision': 0.559322033898305, 'recall': 0.5546218487394958, 'f1': 0.5569620253164557, 'number': 119} {'precision': 0.8864059590316573, 'recall': 0.8839368616527391, 'f1': 0.8851696885169689, 'number': 1077} 0.8468 0.8788 0.8625 0.7977
0.0011 28.07 1600 0.5118 {'precision': 0.838074398249453, 'recall': 0.9375764993880049, 'f1': 0.8850375505488157, 'number': 817} {'precision': 0.5862068965517241, 'recall': 0.5714285714285714, 'f1': 0.5787234042553192, 'number': 119} {'precision': 0.885972850678733, 'recall': 0.9090064995357474, 'f1': 0.8973418881759853, 'number': 1077} 0.8492 0.9006 0.8742 0.7970
0.0006 31.58 1800 0.4786 {'precision': 0.8383500557413601, 'recall': 0.9204406364749081, 'f1': 0.8774795799299884, 'number': 817} {'precision': 0.6, 'recall': 0.5546218487394958, 'f1': 0.5764192139737991, 'number': 119} {'precision': 0.8851412944393802, 'recall': 0.9015784586815228, 'f1': 0.8932842686292549, 'number': 1077} 0.8503 0.8887 0.8691 0.7942
0.0004 35.09 2000 0.4959 {'precision': 0.8338945005611672, 'recall': 0.9094247246022031, 'f1': 0.870023419203747, 'number': 817} {'precision': 0.5172413793103449, 'recall': 0.6302521008403361, 'f1': 0.5681818181818182, 'number': 119} {'precision': 0.8833333333333333, 'recall': 0.8857938718662952, 'f1': 0.8845618915159944, 'number': 1077} 0.8374 0.8803 0.8583 0.7919
0.0003 38.6 2200 0.5023 {'precision': 0.8292682926829268, 'recall': 0.9155446756425949, 'f1': 0.8702734147760327, 'number': 817} {'precision': 0.5470085470085471, 'recall': 0.5378151260504201, 'f1': 0.5423728813559322, 'number': 119} {'precision': 0.8771610555050046, 'recall': 0.8950789229340761, 'f1': 0.8860294117647057, 'number': 1077} 0.8385 0.8823 0.8598 0.7948
0.0002 42.11 2400 0.5095 {'precision': 0.8368479467258602, 'recall': 0.9228886168910648, 'f1': 0.8777648428405123, 'number': 817} {'precision': 0.5333333333333333, 'recall': 0.5378151260504201, 'f1': 0.5355648535564853, 'number': 119} {'precision': 0.8907407407407407, 'recall': 0.89322191272052, 'f1': 0.8919796012980993, 'number': 1077} 0.8472 0.8843 0.8653 0.7922

Framework versions

  • Transformers 4.28.1
  • Pytorch 2.1.0.dev20230810
  • Datasets 2.14.4
  • Tokenizers 0.11.0