layoutlm-funsd3 / README.md
Benedict-L's picture
End of training
95a4d4c verified
|
raw
history blame
8.06 kB
metadata
license: mit
base_model: microsoft/layoutlm-base-uncased
tags:
  - generated_from_trainer
datasets:
  - funsd
model-index:
  - name: layoutlm-funsd3
    results: []

layoutlm-funsd3

This model is a fine-tuned version of microsoft/layoutlm-base-uncased on the funsd dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1833
  • Answer: {'precision': 0.2526041666666667, 'recall': 0.23980222496909764, 'f1': 0.24603677869372226, 'number': 809}
  • Header: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119}
  • Question: {'precision': 0.4935064935064935, 'recall': 0.5352112676056338, 'f1': 0.5135135135135136, 'number': 1065}
  • Overall Precision: 0.3973
  • Overall Recall: 0.3833
  • Overall F1: 0.3902
  • Overall Accuracy: 0.6048

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 12
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Answer Header Question Overall Precision Overall Recall Overall F1 Overall Accuracy
1.9597 1.0 10 1.9692 {'precision': 0.024831867563372995, 'recall': 0.059332509270704575, 'f1': 0.0350109409190372, 'number': 809} {'precision': 0.0054894784995425435, 'recall': 0.05042016806722689, 'f1': 0.009900990099009901, 'number': 119} {'precision': 0.05862516212710765, 'recall': 0.21220657276995306, 'f1': 0.091869918699187, 'number': 1065} 0.0407 0.1405 0.0631 0.1655
1.9429 2.0 20 1.9517 {'precision': 0.02355889724310777, 'recall': 0.0580964153275649, 'f1': 0.033523537803138374, 'number': 809} {'precision': 0.006984866123399301, 'recall': 0.05042016806722689, 'f1': 0.012269938650306747, 'number': 119} {'precision': 0.06357435197817189, 'recall': 0.2187793427230047, 'f1': 0.09852008456659618, 'number': 1065} 0.0439 0.1435 0.0672 0.1837
1.9283 3.0 30 1.9222 {'precision': 0.02506265664160401, 'recall': 0.06180469715698393, 'f1': 0.035663338088445073, 'number': 809} {'precision': 0.005802707930367505, 'recall': 0.025210084033613446, 'f1': 0.009433962264150943, 'number': 119} {'precision': 0.0683998761993191, 'recall': 0.20751173708920187, 'f1': 0.10288640595903166, 'number': 1065} 0.0477 0.1375 0.0708 0.2076
1.8979 4.0 40 1.8822 {'precision': 0.026082130965593784, 'recall': 0.0580964153275649, 'f1': 0.03600153198008425, 'number': 809} {'precision': 0.01327433628318584, 'recall': 0.025210084033613446, 'f1': 0.017391304347826087, 'number': 119} {'precision': 0.07303807303807304, 'recall': 0.17652582159624414, 'f1': 0.10332508931025007, 'number': 1065} 0.0517 0.1194 0.0722 0.2412
1.8452 5.0 50 1.8330 {'precision': 0.02404809619238477, 'recall': 0.04449938195302843, 'f1': 0.03122289679098005, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.08863636363636364, 'recall': 0.14647887323943662, 'f1': 0.11044247787610618, 'number': 1065} 0.0577 0.0963 0.0722 0.2719
1.7986 6.0 60 1.7759 {'precision': 0.017241379310344827, 'recall': 0.022249690976514216, 'f1': 0.019427954668105776, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.1244196843082637, 'recall': 0.12582159624413145, 'f1': 0.12511671335200747, 'number': 1065} 0.0713 0.0763 0.0737 0.3012
1.7397 7.0 70 1.7107 {'precision': 0.02045728038507822, 'recall': 0.021013597033374538, 'f1': 0.02073170731707317, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.18026315789473685, 'recall': 0.12863849765258217, 'f1': 0.15013698630136987, 'number': 1065} 0.0967 0.0773 0.0859 0.3270
1.6707 8.0 80 1.6298 {'precision': 0.03066271018793274, 'recall': 0.038318912237330034, 'f1': 0.03406593406593406, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.20087815587266739, 'recall': 0.17183098591549295, 'f1': 0.18522267206477733, 'number': 1065} 0.1113 0.1074 0.1093 0.3654
1.5891 9.0 90 1.5416 {'precision': 0.047619047619047616, 'recall': 0.06674907292954264, 'f1': 0.055584148224395266, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.2087421944692239, 'recall': 0.21971830985915494, 'f1': 0.2140896614821592, 'number': 1065} 0.1277 0.1445 0.1356 0.4183
1.516 10.0 100 1.4443 {'precision': 0.06370070778564206, 'recall': 0.07787391841779975, 'f1': 0.07007786429365963, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.2838983050847458, 'recall': 0.3145539906103286, 'f1': 0.2984409799554566, 'number': 1065} 0.1835 0.1997 0.1913 0.4720
1.3887 11.0 110 1.3259 {'precision': 0.11662531017369727, 'recall': 0.1161928306551298, 'f1': 0.11640866873065016, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.39842381786339753, 'recall': 0.4272300469483568, 'f1': 0.412324422292705, 'number': 1065} 0.2818 0.2755 0.2786 0.5434
1.261 12.0 120 1.1833 {'precision': 0.2526041666666667, 'recall': 0.23980222496909764, 'f1': 0.24603677869372226, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.4935064935064935, 'recall': 0.5352112676056338, 'f1': 0.5135135135135136, 'number': 1065} 0.3973 0.3833 0.3902 0.6048

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.1+cu121
  • Datasets 2.19.2
  • Tokenizers 0.19.1