layoutlm-funsd3 / README.md
Benedict-L's picture
End of training
181f2b3 verified
|
raw
history blame
11.7 kB
metadata
license: mit
base_model: microsoft/layoutlm-base-uncased
tags:
  - generated_from_trainer
datasets:
  - funsd
model-index:
  - name: layoutlm-funsd3
    results: []

layoutlm-funsd3

This model is a fine-tuned version of microsoft/layoutlm-base-uncased on the funsd dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6751
  • Answer: {'precision': 0.6893617021276596, 'recall': 0.8009888751545118, 'f1': 0.7409948542024015, 'number': 809}
  • Header: {'precision': 0.29, 'recall': 0.24369747899159663, 'f1': 0.2648401826484018, 'number': 119}
  • Question: {'precision': 0.7557840616966581, 'recall': 0.828169014084507, 'f1': 0.7903225806451614, 'number': 1065}
  • Overall Precision: 0.7064
  • Overall Recall: 0.7822
  • Overall F1: 0.7424
  • Overall Accuracy: 0.8022

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Answer Header Question Overall Precision Overall Recall Overall F1 Overall Accuracy
2.0338 1.0 10 2.0357 {'precision': 0.037227214377406934, 'recall': 0.03584672435105068, 'f1': 0.03652392947103275, 'number': 809} {'precision': 0.004568527918781726, 'recall': 0.15126050420168066, 'f1': 0.008869179600886918, 'number': 119} {'precision': 0.052884615384615384, 'recall': 0.15492957746478872, 'f1': 0.07885304659498207, 'number': 1065} 0.0270 0.1064 0.0431 0.0892
2.0223 2.0 20 2.0181 {'precision': 0.03938730853391685, 'recall': 0.04449938195302843, 'f1': 0.04178757980266977, 'number': 809} {'precision': 0.004824063564131668, 'recall': 0.14285714285714285, 'f1': 0.009332967334614329, 'number': 119} {'precision': 0.05484848484848485, 'recall': 0.1699530516431925, 'f1': 0.08293241695303552, 'number': 1065} 0.0302 0.1174 0.0481 0.1005
1.9986 3.0 30 1.9858 {'precision': 0.04096989966555184, 'recall': 0.06056860321384425, 'f1': 0.048877805486284294, 'number': 809} {'precision': 0.004677941705649514, 'recall': 0.1092436974789916, 'f1': 0.008971704623878536, 'number': 119} {'precision': 0.05835468260745801, 'recall': 0.19248826291079812, 'f1': 0.08955875928352992, 'number': 1065} 0.0357 0.1340 0.0563 0.1256
1.9605 4.0 40 1.9419 {'precision': 0.03710462287104623, 'recall': 0.0754017305315204, 'f1': 0.04973501834488382, 'number': 809} {'precision': 0.006282124500285551, 'recall': 0.09243697478991597, 'f1': 0.011764705882352943, 'number': 119} {'precision': 0.06151288445552785, 'recall': 0.2084507042253521, 'f1': 0.09499358151476253, 'number': 1065} 0.0420 0.1475 0.0654 0.1633
1.9119 5.0 50 1.8881 {'precision': 0.03694581280788178, 'recall': 0.09270704573547589, 'f1': 0.0528355054596689, 'number': 809} {'precision': 0.002574002574002574, 'recall': 0.01680672268907563, 'f1': 0.004464285714285714, 'number': 119} {'precision': 0.0671203216826477, 'recall': 0.20375586854460093, 'f1': 0.10097719869706841, 'number': 1065} 0.0487 0.1475 0.0732 0.2224
1.8502 6.0 60 1.8264 {'precision': 0.03467062902426944, 'recall': 0.0865265760197775, 'f1': 0.04950495049504951, 'number': 809} {'precision': 0.010101010101010102, 'recall': 0.01680672268907563, 'f1': 0.012618296529968456, 'number': 119} {'precision': 0.08910070451719851, 'recall': 0.20187793427230047, 'f1': 0.1236342725704428, 'number': 1065} 0.0620 0.1440 0.0867 0.2866
1.7869 7.0 70 1.7587 {'precision': 0.026297085998578537, 'recall': 0.04573547589616811, 'f1': 0.033393501805054154, 'number': 809} {'precision': 0.05555555555555555, 'recall': 0.008403361344537815, 'f1': 0.014598540145985401, 'number': 119} {'precision': 0.13085399449035812, 'recall': 0.1784037558685446, 'f1': 0.15097338100913787, 'number': 1065} 0.0792 0.1144 0.0936 0.3296
1.7064 8.0 80 1.6779 {'precision': 0.018147086914995225, 'recall': 0.023485784919653894, 'f1': 0.020474137931034486, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.18514946962391515, 'recall': 0.18028169014084508, 'f1': 0.18268315889628925, 'number': 1065} 0.1011 0.1059 0.1034 0.3535
1.6169 9.0 90 1.5857 {'precision': 0.03464419475655431, 'recall': 0.04573547589616811, 'f1': 0.03942461374533831, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.2270450751252087, 'recall': 0.25539906103286386, 'f1': 0.2403888643393725, 'number': 1065} 0.1364 0.1550 0.1451 0.3995
1.5331 10.0 100 1.4740 {'precision': 0.06180344478216818, 'recall': 0.0754017305315204, 'f1': 0.06792873051224943, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.3259207783182766, 'recall': 0.4403755868544601, 'f1': 0.3746006389776358, 'number': 1065} 0.2185 0.2659 0.2399 0.4731
1.3817 11.0 110 1.3317 {'precision': 0.1468609865470852, 'recall': 0.1619283065512979, 'f1': 0.1540270429159318, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.42608089260808923, 'recall': 0.5737089201877934, 'f1': 0.48899559823929567, 'number': 1065} 0.3190 0.3723 0.3436 0.5459
1.2192 12.0 120 1.1630 {'precision': 0.2839506172839506, 'recall': 0.2843016069221261, 'f1': 0.28412600370599134, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.5201238390092879, 'recall': 0.6309859154929578, 'f1': 0.5702163767501062, 'number': 1065} 0.4283 0.4526 0.4401 0.6106
1.068 13.0 130 1.0176 {'precision': 0.41460905349794236, 'recall': 0.49814585908529047, 'f1': 0.45255474452554745, 'number': 809} {'precision': 0.05263157894736842, 'recall': 0.008403361344537815, 'f1': 0.014492753623188406, 'number': 119} {'precision': 0.54477050413845, 'recall': 0.67981220657277, 'f1': 0.6048454469507102, 'number': 1065} 0.4862 0.5660 0.5231 0.6807
0.901 14.0 140 0.9007 {'precision': 0.484472049689441, 'recall': 0.5784919653893696, 'f1': 0.5273239436619719, 'number': 809} {'precision': 0.023255813953488372, 'recall': 0.008403361344537815, 'f1': 0.01234567901234568, 'number': 119} {'precision': 0.6263463131731566, 'recall': 0.7098591549295775, 'f1': 0.665492957746479, 'number': 1065} 0.5528 0.6147 0.5821 0.7168
0.7884 15.0 150 0.8050 {'precision': 0.5395833333333333, 'recall': 0.6402966625463535, 'f1': 0.5856416054267948, 'number': 809} {'precision': 0.11940298507462686, 'recall': 0.06722689075630252, 'f1': 0.08602150537634408, 'number': 119} {'precision': 0.6304176516942475, 'recall': 0.7511737089201878, 'f1': 0.6855184233076264, 'number': 1065} 0.5775 0.6653 0.6183 0.7537
0.7027 16.0 160 0.7470 {'precision': 0.6069246435845214, 'recall': 0.7367119901112484, 'f1': 0.6655499720826354, 'number': 809} {'precision': 0.2236842105263158, 'recall': 0.14285714285714285, 'f1': 0.17435897435897438, 'number': 119} {'precision': 0.6496465043205027, 'recall': 0.7765258215962442, 'f1': 0.7074422583404619, 'number': 1065} 0.6178 0.7225 0.6660 0.7717
0.6177 17.0 170 0.7266 {'precision': 0.6294691224268689, 'recall': 0.7181705809641533, 'f1': 0.6709006928406466, 'number': 809} {'precision': 0.2777777777777778, 'recall': 0.16806722689075632, 'f1': 0.20942408376963353, 'number': 119} {'precision': 0.6956875508543532, 'recall': 0.8028169014084507, 'f1': 0.7454228421970358, 'number': 1065} 0.6547 0.7306 0.6905 0.7750
0.5539 18.0 180 0.6824 {'precision': 0.6402805611222445, 'recall': 0.7898640296662547, 'f1': 0.7072495849474266, 'number': 809} {'precision': 0.27710843373493976, 'recall': 0.19327731092436976, 'f1': 0.22772277227722776, 'number': 119} {'precision': 0.7141687141687142, 'recall': 0.8187793427230047, 'f1': 0.762904636920385, 'number': 1065} 0.6664 0.7697 0.7143 0.7913
0.499 19.0 190 0.6764 {'precision': 0.6718266253869969, 'recall': 0.8046971569839307, 'f1': 0.732283464566929, 'number': 809} {'precision': 0.3068181818181818, 'recall': 0.226890756302521, 'f1': 0.2608695652173913, 'number': 119} {'precision': 0.7504378283712785, 'recall': 0.8046948356807512, 'f1': 0.7766198459447213, 'number': 1065} 0.6980 0.7702 0.7323 0.7961
0.4355 20.0 200 0.6751 {'precision': 0.6893617021276596, 'recall': 0.8009888751545118, 'f1': 0.7409948542024015, 'number': 809} {'precision': 0.29, 'recall': 0.24369747899159663, 'f1': 0.2648401826484018, 'number': 119} {'precision': 0.7557840616966581, 'recall': 0.828169014084507, 'f1': 0.7903225806451614, 'number': 1065} 0.7064 0.7822 0.7424 0.8022

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.1+cu121
  • Datasets 2.19.2
  • Tokenizers 0.19.1