File size: 14,093 Bytes
95a4d4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8dab8b3
 
 
 
 
 
 
 
95a4d4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9311e0
95a4d4c
 
 
 
 
 
8dab8b3
95a4d4c
 
 
 
8dab8b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95a4d4c
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
---
license: mit
base_model: microsoft/layoutlm-base-uncased
tags:
- generated_from_trainer
datasets:
- funsd
model-index:
- name: layoutlm-funsd3
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# layoutlm-funsd3

This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6649
- Answer: {'precision': 0.6862955032119914, 'recall': 0.792336217552534, 'f1': 0.7355134825014343, 'number': 809}
- Header: {'precision': 0.2782608695652174, 'recall': 0.2689075630252101, 'f1': 0.2735042735042735, 'number': 119}
- Question: {'precision': 0.731418918918919, 'recall': 0.8131455399061033, 'f1': 0.7701200533570476, 'number': 1065}
- Overall Precision: 0.6892
- Overall Recall: 0.7722
- Overall F1: 0.7283
- Overall Accuracy: 0.8077

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 25
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Answer                                                                                                         | Header                                                                                                         | Question                                                                                                       | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
| 1.9006        | 1.0   | 10   | 1.9148          | {'precision': 0.034013605442176874, 'recall': 0.11742892459826947, 'f1': 0.05274847307051638, 'number': 809}   | {'precision': 0.007547169811320755, 'recall': 0.01680672268907563, 'f1': 0.010416666666666666, 'number': 119}  | {'precision': 0.035897435897435895, 'recall': 0.06572769953051644, 'f1': 0.04643449419568822, 'number': 1065}  | 0.0333            | 0.0838         | 0.0477     | 0.1975           |
| 1.8905        | 2.0   | 20   | 1.9045          | {'precision': 0.03486238532110092, 'recall': 0.11742892459826947, 'f1': 0.05376344086021505, 'number': 809}    | {'precision': 0.004761904761904762, 'recall': 0.008403361344537815, 'f1': 0.006079027355623101, 'number': 119} | {'precision': 0.03635432667690732, 'recall': 0.06666666666666667, 'f1': 0.04705102717031146, 'number': 1065}   | 0.0342            | 0.0838         | 0.0485     | 0.2074           |
| 1.8811        | 3.0   | 30   | 1.8873          | {'precision': 0.032742681047765794, 'recall': 0.10506798516687268, 'f1': 0.0499265785609398, 'number': 809}    | {'precision': 0.00684931506849315, 'recall': 0.008403361344537815, 'f1': 0.007547169811320755, 'number': 119}  | {'precision': 0.03967027305512622, 'recall': 0.07230046948356808, 'f1': 0.051230871590153035, 'number': 1065}  | 0.0348            | 0.0818         | 0.0488     | 0.2231           |
| 1.8598        | 4.0   | 40   | 1.8641          | {'precision': 0.029242174629324547, 'recall': 0.08776266996291718, 'f1': 0.043867778807537845, 'number': 809}  | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119}                                                    | {'precision': 0.045021186440677964, 'recall': 0.07981220657276995, 'f1': 0.057568574331188616, 'number': 1065} | 0.0355            | 0.0783         | 0.0489     | 0.2434           |
| 1.8352        | 5.0   | 50   | 1.8359          | {'precision': 0.027777777777777776, 'recall': 0.07416563658838071, 'f1': 0.040417649040080834, 'number': 809}  | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119}                                                    | {'precision': 0.05329512893982808, 'recall': 0.08732394366197183, 'f1': 0.06619217081850534, 'number': 1065}   | 0.0389            | 0.0768         | 0.0516     | 0.2684           |
| 1.805         | 6.0   | 60   | 1.8038          | {'precision': 0.021965952773201538, 'recall': 0.049443757725587144, 'f1': 0.030418250950570342, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119}                                                    | {'precision': 0.056172436316133244, 'recall': 0.08075117370892018, 'f1': 0.06625577812018489, 'number': 1065}  | 0.0374            | 0.0632         | 0.0470     | 0.2894           |
| 1.7726        | 7.0   | 70   | 1.7692          | {'precision': 0.02216252518468771, 'recall': 0.0407911001236094, 'f1': 0.028720626631853784, 'number': 809}    | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119}                                                    | {'precision': 0.06599378881987578, 'recall': 0.07981220657276995, 'f1': 0.07224819379515512, 'number': 1065}   | 0.0424            | 0.0592         | 0.0494     | 0.3088           |
| 1.7332        | 8.0   | 80   | 1.7277          | {'precision': 0.018210609659540775, 'recall': 0.02843016069221261, 'f1': 0.022200772200772198, 'number': 809}  | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119}                                                    | {'precision': 0.08497316636851521, 'recall': 0.0892018779342723, 'f1': 0.08703618873110398, 'number': 1065}    | 0.0496            | 0.0592         | 0.0540     | 0.3301           |
| 1.6941        | 9.0   | 90   | 1.6821          | {'precision': 0.024411508282476024, 'recall': 0.034610630407911, 'f1': 0.028629856850715743, 'number': 809}    | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119}                                                    | {'precision': 0.11352885525070956, 'recall': 0.11267605633802817, 'f1': 0.11310084825636192, 'number': 1065}   | 0.0672            | 0.0743         | 0.0705     | 0.3529           |
| 1.6579        | 10.0  | 100  | 1.6290          | {'precision': 0.03211805555555555, 'recall': 0.04573547589616811, 'f1': 0.03773584905660377, 'number': 809}    | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119}                                                    | {'precision': 0.1650902837489252, 'recall': 0.18028169014084508, 'f1': 0.17235188509874327, 'number': 1065}    | 0.0989            | 0.1149         | 0.1063     | 0.3897           |
| 1.5882        | 11.0  | 110  | 1.5600          | {'precision': 0.06073943661971831, 'recall': 0.08529048207663782, 'f1': 0.07095115681233934, 'number': 809}    | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119}                                                    | {'precision': 0.22230538922155688, 'recall': 0.27887323943661974, 'f1': 0.2473969179508538, 'number': 1065}    | 0.1481            | 0.1836         | 0.1639     | 0.4485           |
| 1.5164        | 12.0  | 120  | 1.4778          | {'precision': 0.111, 'recall': 0.13720642768850433, 'f1': 0.12271973466003316, 'number': 809}                  | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119}                                                    | {'precision': 0.28520877565463554, 'recall': 0.3784037558685446, 'f1': 0.3252623083131558, 'number': 1065}     | 0.2130            | 0.2579         | 0.2333     | 0.5018           |
| 1.4203        | 13.0  | 130  | 1.3796          | {'precision': 0.1891304347826087, 'recall': 0.21508034610630408, 'f1': 0.20127241179872757, 'number': 809}     | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119}                                                    | {'precision': 0.37259100642398285, 'recall': 0.49014084507042255, 'f1': 0.4233576642335766, 'number': 1065}    | 0.2999            | 0.3492         | 0.3227     | 0.5474           |
| 1.2916        | 14.0  | 140  | 1.2617          | {'precision': 0.27813852813852813, 'recall': 0.3176761433868974, 'f1': 0.29659549913444894, 'number': 809}     | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119}                                                    | {'precision': 0.4349112426035503, 'recall': 0.5521126760563381, 'f1': 0.48655357881671496, 'number': 1065}     | 0.3713            | 0.4240         | 0.3959     | 0.5943           |
| 1.1747        | 15.0  | 150  | 1.1279          | {'precision': 0.3726775956284153, 'recall': 0.4215080346106304, 'f1': 0.39559164733178653, 'number': 809}      | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119}                                                    | {'precision': 0.5030816640986132, 'recall': 0.6131455399061033, 'f1': 0.5526872619551417, 'number': 1065}      | 0.4482            | 0.4987         | 0.4721     | 0.6467           |
| 1.0441        | 16.0  | 160  | 0.9940          | {'precision': 0.46846846846846846, 'recall': 0.5784919653893696, 'f1': 0.5176991150442478, 'number': 809}      | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119}                                                    | {'precision': 0.5588709677419355, 'recall': 0.6507042253521127, 'f1': 0.6013015184381778, 'number': 1065}      | 0.5126            | 0.5825         | 0.5453     | 0.7049           |
| 0.9042        | 17.0  | 170  | 0.8718          | {'precision': 0.567703109327984, 'recall': 0.6996291718170581, 'f1': 0.6267995570321152, 'number': 809}        | {'precision': 0.020833333333333332, 'recall': 0.008403361344537815, 'f1': 0.011976047904191616, 'number': 119} | {'precision': 0.6192468619246861, 'recall': 0.6948356807511737, 'f1': 0.6548672566371683, 'number': 1065}      | 0.5835            | 0.6558         | 0.6175     | 0.7473           |
| 0.7845        | 18.0  | 180  | 0.7760          | {'precision': 0.597478176527643, 'recall': 0.761433868974042, 'f1': 0.6695652173913043, 'number': 809}         | {'precision': 0.16981132075471697, 'recall': 0.07563025210084033, 'f1': 0.10465116279069768, 'number': 119}    | {'precision': 0.6678082191780822, 'recall': 0.7323943661971831, 'f1': 0.6986117330944918, 'number': 1065}      | 0.6239            | 0.7050         | 0.6620     | 0.7693           |
| 0.7023        | 19.0  | 190  | 0.7265          | {'precision': 0.619188921859545, 'recall': 0.7737948084054388, 'f1': 0.6879120879120879, 'number': 809}        | {'precision': 0.22580645161290322, 'recall': 0.11764705882352941, 'f1': 0.15469613259668508, 'number': 119}    | {'precision': 0.6943722943722944, 'recall': 0.7530516431924883, 'f1': 0.7225225225225225, 'number': 1065}      | 0.6472            | 0.7235         | 0.6833     | 0.7783           |
| 0.6331        | 20.0  | 200  | 0.7139          | {'precision': 0.6457446808510638, 'recall': 0.7503090234857849, 'f1': 0.6941109205260149, 'number': 809}       | {'precision': 0.25609756097560976, 'recall': 0.17647058823529413, 'f1': 0.208955223880597, 'number': 119}      | {'precision': 0.6934548467274234, 'recall': 0.7859154929577464, 'f1': 0.7367957746478873, 'number': 1065}      | 0.6572            | 0.7351         | 0.6940     | 0.7900           |
| 0.5789        | 21.0  | 210  | 0.6960          | {'precision': 0.6496815286624203, 'recall': 0.7564894932014833, 'f1': 0.6990291262135921, 'number': 809}       | {'precision': 0.25274725274725274, 'recall': 0.19327731092436976, 'f1': 0.21904761904761905, 'number': 119}    | {'precision': 0.706081081081081, 'recall': 0.7849765258215963, 'f1': 0.7434415295686971, 'number': 1065}       | 0.6635            | 0.7381         | 0.6988     | 0.7929           |
| 0.5417        | 22.0  | 220  | 0.6774          | {'precision': 0.6699346405228758, 'recall': 0.7601977750309024, 'f1': 0.7122177185871453, 'number': 809}       | {'precision': 0.211864406779661, 'recall': 0.21008403361344538, 'f1': 0.2109704641350211, 'number': 119}       | {'precision': 0.6981907894736842, 'recall': 0.7971830985915493, 'f1': 0.7444103463393249, 'number': 1065}      | 0.6612            | 0.7471         | 0.7015     | 0.7959           |
| 0.481         | 23.0  | 230  | 0.6671          | {'precision': 0.6748400852878464, 'recall': 0.7824474660074165, 'f1': 0.7246708643388666, 'number': 809}       | {'precision': 0.2540983606557377, 'recall': 0.2605042016806723, 'f1': 0.2572614107883818, 'number': 119}       | {'precision': 0.718013468013468, 'recall': 0.8009389671361502, 'f1': 0.7572126054150022, 'number': 1065}       | 0.6748            | 0.7612         | 0.7154     | 0.8022           |
| 0.4419        | 24.0  | 240  | 0.6534          | {'precision': 0.6799140708915145, 'recall': 0.7824474660074165, 'f1': 0.7275862068965516, 'number': 809}       | {'precision': 0.2818181818181818, 'recall': 0.2605042016806723, 'f1': 0.27074235807860264, 'number': 119}      | {'precision': 0.7332185886402753, 'recall': 0.8, 'f1': 0.7651549169286035, 'number': 1065}                     | 0.6882            | 0.7607         | 0.7226     | 0.8054           |
| 0.406         | 25.0  | 250  | 0.6649          | {'precision': 0.6862955032119914, 'recall': 0.792336217552534, 'f1': 0.7355134825014343, 'number': 809}        | {'precision': 0.2782608695652174, 'recall': 0.2689075630252101, 'f1': 0.2735042735042735, 'number': 119}       | {'precision': 0.731418918918919, 'recall': 0.8131455399061033, 'f1': 0.7701200533570476, 'number': 1065}       | 0.6892            | 0.7722         | 0.7283     | 0.8077           |


### Framework versions

- Transformers 4.41.2
- Pytorch 2.3.1+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1