Benedict-L
commited on
Commit
•
8dab8b3
1
Parent(s):
5ff59c9
End of training
Browse files
README.md
CHANGED
@@ -17,14 +17,14 @@ should probably proofread and complete it, then remove this comment. -->
|
|
17 |
|
18 |
This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
|
19 |
It achieves the following results on the evaluation set:
|
20 |
-
- Loss: 0.
|
21 |
-
- Answer: {'precision': 0.
|
22 |
-
- Header: {'precision': 0.
|
23 |
-
- Question: {'precision': 0.
|
24 |
-
- Overall Precision: 0.
|
25 |
-
- Overall Recall: 0.
|
26 |
-
- Overall F1: 0.
|
27 |
-
- Overall Accuracy: 0.
|
28 |
|
29 |
## Model description
|
30 |
|
@@ -50,53 +50,38 @@ The following hyperparameters were used during training:
|
|
50 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
- lr_scheduler_type: linear
|
52 |
- lr_scheduler_warmup_steps: 500
|
53 |
-
- num_epochs:
|
54 |
- mixed_precision_training: Native AMP
|
55 |
|
56 |
### Training results
|
57 |
|
58 |
-
| Training Loss | Epoch | Step | Validation Loss | Answer | Header
|
59 |
-
|
60 |
-
| 1.
|
61 |
-
| 1.
|
62 |
-
| 1.
|
63 |
-
| 1.
|
64 |
-
| 1.
|
65 |
-
| 1.
|
66 |
-
| 1.
|
67 |
-
| 1.
|
68 |
-
| 1.
|
69 |
-
| 1.
|
70 |
-
| 1.
|
71 |
-
| 1.
|
72 |
-
| 1.
|
73 |
-
| 1.
|
74 |
-
| 1.
|
75 |
-
| 1.
|
76 |
-
| 0.
|
77 |
-
| 0.
|
78 |
-
| 0.
|
79 |
-
| 0.
|
80 |
-
| 0.
|
81 |
-
| 0.
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
-
| 0.3846 | 26.0 | 260 | 0.6857 | {'precision': 0.6980920314253648, 'recall': 0.7688504326328801, 'f1': 0.731764705882353, 'number': 809} | {'precision': 0.2773109243697479, 'recall': 0.2773109243697479, 'f1': 0.2773109243697479, 'number': 119} | {'precision': 0.7468566638725901, 'recall': 0.8366197183098592, 'f1': 0.7891939769707705, 'number': 1065} | 0.7018 | 0.7757 | 0.7369 | 0.7966 |
|
86 |
-
| 0.3533 | 27.0 | 270 | 0.6714 | {'precision': 0.6938997821350763, 'recall': 0.7873918417799752, 'f1': 0.7376954255935148, 'number': 809} | {'precision': 0.2767857142857143, 'recall': 0.2605042016806723, 'f1': 0.2683982683982684, 'number': 119} | {'precision': 0.7580645161290323, 'recall': 0.8384976525821596, 'f1': 0.7962550156041017, 'number': 1065} | 0.7070 | 0.7832 | 0.7432 | 0.7971 |
|
87 |
-
| 0.3271 | 28.0 | 280 | 0.7090 | {'precision': 0.6864035087719298, 'recall': 0.7737948084054388, 'f1': 0.7274840209180709, 'number': 809} | {'precision': 0.2706766917293233, 'recall': 0.3025210084033613, 'f1': 0.28571428571428564, 'number': 119} | {'precision': 0.7462562396006656, 'recall': 0.8422535211267606, 'f1': 0.7913542126157919, 'number': 1065} | 0.6938 | 0.7822 | 0.7354 | 0.7929 |
|
88 |
-
| 0.3031 | 29.0 | 290 | 0.7212 | {'precision': 0.7275943396226415, 'recall': 0.7626699629171817, 'f1': 0.7447193723596861, 'number': 809} | {'precision': 0.3130434782608696, 'recall': 0.3025210084033613, 'f1': 0.3076923076923077, 'number': 119} | {'precision': 0.7788546255506608, 'recall': 0.8300469483568075, 'f1': 0.8036363636363637, 'number': 1065} | 0.7326 | 0.7712 | 0.7514 | 0.7949 |
|
89 |
-
| 0.2723 | 30.0 | 300 | 0.7351 | {'precision': 0.7036637931034483, 'recall': 0.8071693448702101, 'f1': 0.7518710420264824, 'number': 809} | {'precision': 0.2740740740740741, 'recall': 0.31092436974789917, 'f1': 0.29133858267716534, 'number': 119} | {'precision': 0.7715289982425307, 'recall': 0.8244131455399061, 'f1': 0.7970948706309579, 'number': 1065} | 0.7124 | 0.7868 | 0.7477 | 0.7982 |
|
90 |
-
| 0.2589 | 31.0 | 310 | 0.7356 | {'precision': 0.6878914405010439, 'recall': 0.8145859085290482, 'f1': 0.745897000565931, 'number': 809} | {'precision': 0.30973451327433627, 'recall': 0.29411764705882354, 'f1': 0.3017241379310345, 'number': 119} | {'precision': 0.7708688245315162, 'recall': 0.8497652582159625, 'f1': 0.8083966056275124, 'number': 1065} | 0.7122 | 0.8023 | 0.7546 | 0.7948 |
|
91 |
-
| 0.2305 | 32.0 | 320 | 0.7378 | {'precision': 0.7220956719817767, 'recall': 0.7836835599505563, 'f1': 0.7516301126259632, 'number': 809} | {'precision': 0.32432432432432434, 'recall': 0.3025210084033613, 'f1': 0.31304347826086953, 'number': 119} | {'precision': 0.7734711455641688, 'recall': 0.8431924882629108, 'f1': 0.8068283917340521, 'number': 1065} | 0.7293 | 0.7868 | 0.7569 | 0.7983 |
|
92 |
-
| 0.2114 | 33.0 | 330 | 0.7546 | {'precision': 0.7093275488069414, 'recall': 0.8084054388133498, 'f1': 0.7556325823223571, 'number': 809} | {'precision': 0.3392857142857143, 'recall': 0.31932773109243695, 'f1': 0.32900432900432897, 'number': 119} | {'precision': 0.7737162750217581, 'recall': 0.8347417840375587, 'f1': 0.803071364046974, 'number': 1065} | 0.7242 | 0.7933 | 0.7572 | 0.7987 |
|
93 |
-
| 0.1921 | 34.0 | 340 | 0.7701 | {'precision': 0.724669603524229, 'recall': 0.8133498145859085, 'f1': 0.7664531158998252, 'number': 809} | {'precision': 0.2980132450331126, 'recall': 0.37815126050420167, 'f1': 0.33333333333333337, 'number': 119} | {'precision': 0.7862939585211902, 'recall': 0.8187793427230047, 'f1': 0.8022079116835327, 'number': 1065} | 0.7265 | 0.7903 | 0.7570 | 0.7991 |
|
94 |
-
| 0.1791 | 35.0 | 350 | 0.8101 | {'precision': 0.7331812998859749, 'recall': 0.7948084054388134, 'f1': 0.7627520759193357, 'number': 809} | {'precision': 0.31724137931034485, 'recall': 0.3865546218487395, 'f1': 0.3484848484848485, 'number': 119} | {'precision': 0.7892416225749559, 'recall': 0.8403755868544601, 'f1': 0.814006366530241, 'number': 1065} | 0.7347 | 0.7948 | 0.7636 | 0.7955 |
|
95 |
-
| 0.1607 | 36.0 | 360 | 0.7987 | {'precision': 0.7369020501138952, 'recall': 0.799752781211372, 'f1': 0.7670420865441612, 'number': 809} | {'precision': 0.31690140845070425, 'recall': 0.37815126050420167, 'f1': 0.3448275862068965, 'number': 119} | {'precision': 0.784121320249777, 'recall': 0.8253521126760563, 'f1': 0.8042086001829827, 'number': 1065} | 0.7338 | 0.7883 | 0.7600 | 0.8035 |
|
96 |
-
| 0.145 | 37.0 | 370 | 0.8154 | {'precision': 0.7079741379310345, 'recall': 0.8121137206427689, 'f1': 0.7564766839378237, 'number': 809} | {'precision': 0.3248407643312102, 'recall': 0.42857142857142855, 'f1': 0.3695652173913043, 'number': 119} | {'precision': 0.7934782608695652, 'recall': 0.8225352112676056, 'f1': 0.8077455048409405, 'number': 1065} | 0.7236 | 0.7948 | 0.7575 | 0.8013 |
|
97 |
-
| 0.139 | 38.0 | 380 | 0.8250 | {'precision': 0.7334083239595051, 'recall': 0.8059332509270705, 'f1': 0.767962308598351, 'number': 809} | {'precision': 0.3333333333333333, 'recall': 0.4117647058823529, 'f1': 0.36842105263157887, 'number': 119} | {'precision': 0.7953110910730388, 'recall': 0.828169014084507, 'f1': 0.8114075436982521, 'number': 1065} | 0.7380 | 0.7943 | 0.7651 | 0.8062 |
|
98 |
-
| 0.1266 | 39.0 | 390 | 0.8796 | {'precision': 0.762962962962963, 'recall': 0.7639060568603214, 'f1': 0.7634342186534898, 'number': 809} | {'precision': 0.34591194968553457, 'recall': 0.46218487394957986, 'f1': 0.39568345323741, 'number': 119} | {'precision': 0.7884267631103075, 'recall': 0.8187793427230047, 'f1': 0.8033164440350069, 'number': 1065} | 0.7446 | 0.7752 | 0.7596 | 0.7989 |
|
99 |
-
| 0.1147 | 40.0 | 400 | 0.8917 | {'precision': 0.7259507829977628, 'recall': 0.8022249690976514, 'f1': 0.7621843805049912, 'number': 809} | {'precision': 0.3355263157894737, 'recall': 0.42857142857142855, 'f1': 0.3763837638376384, 'number': 119} | {'precision': 0.7875, 'recall': 0.828169014084507, 'f1': 0.8073226544622427, 'number': 1065} | 0.7304 | 0.7938 | 0.7608 | 0.7919 |
|
100 |
|
101 |
|
102 |
### Framework versions
|
|
|
17 |
|
18 |
This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
|
19 |
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.6649
|
21 |
+
- Answer: {'precision': 0.6862955032119914, 'recall': 0.792336217552534, 'f1': 0.7355134825014343, 'number': 809}
|
22 |
+
- Header: {'precision': 0.2782608695652174, 'recall': 0.2689075630252101, 'f1': 0.2735042735042735, 'number': 119}
|
23 |
+
- Question: {'precision': 0.731418918918919, 'recall': 0.8131455399061033, 'f1': 0.7701200533570476, 'number': 1065}
|
24 |
+
- Overall Precision: 0.6892
|
25 |
+
- Overall Recall: 0.7722
|
26 |
+
- Overall F1: 0.7283
|
27 |
+
- Overall Accuracy: 0.8077
|
28 |
|
29 |
## Model description
|
30 |
|
|
|
50 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
- lr_scheduler_type: linear
|
52 |
- lr_scheduler_warmup_steps: 500
|
53 |
+
- num_epochs: 25
|
54 |
- mixed_precision_training: Native AMP
|
55 |
|
56 |
### Training results
|
57 |
|
58 |
+
| Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|
59 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
|
60 |
+
| 1.9006 | 1.0 | 10 | 1.9148 | {'precision': 0.034013605442176874, 'recall': 0.11742892459826947, 'f1': 0.05274847307051638, 'number': 809} | {'precision': 0.007547169811320755, 'recall': 0.01680672268907563, 'f1': 0.010416666666666666, 'number': 119} | {'precision': 0.035897435897435895, 'recall': 0.06572769953051644, 'f1': 0.04643449419568822, 'number': 1065} | 0.0333 | 0.0838 | 0.0477 | 0.1975 |
|
61 |
+
| 1.8905 | 2.0 | 20 | 1.9045 | {'precision': 0.03486238532110092, 'recall': 0.11742892459826947, 'f1': 0.05376344086021505, 'number': 809} | {'precision': 0.004761904761904762, 'recall': 0.008403361344537815, 'f1': 0.006079027355623101, 'number': 119} | {'precision': 0.03635432667690732, 'recall': 0.06666666666666667, 'f1': 0.04705102717031146, 'number': 1065} | 0.0342 | 0.0838 | 0.0485 | 0.2074 |
|
62 |
+
| 1.8811 | 3.0 | 30 | 1.8873 | {'precision': 0.032742681047765794, 'recall': 0.10506798516687268, 'f1': 0.0499265785609398, 'number': 809} | {'precision': 0.00684931506849315, 'recall': 0.008403361344537815, 'f1': 0.007547169811320755, 'number': 119} | {'precision': 0.03967027305512622, 'recall': 0.07230046948356808, 'f1': 0.051230871590153035, 'number': 1065} | 0.0348 | 0.0818 | 0.0488 | 0.2231 |
|
63 |
+
| 1.8598 | 4.0 | 40 | 1.8641 | {'precision': 0.029242174629324547, 'recall': 0.08776266996291718, 'f1': 0.043867778807537845, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.045021186440677964, 'recall': 0.07981220657276995, 'f1': 0.057568574331188616, 'number': 1065} | 0.0355 | 0.0783 | 0.0489 | 0.2434 |
|
64 |
+
| 1.8352 | 5.0 | 50 | 1.8359 | {'precision': 0.027777777777777776, 'recall': 0.07416563658838071, 'f1': 0.040417649040080834, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.05329512893982808, 'recall': 0.08732394366197183, 'f1': 0.06619217081850534, 'number': 1065} | 0.0389 | 0.0768 | 0.0516 | 0.2684 |
|
65 |
+
| 1.805 | 6.0 | 60 | 1.8038 | {'precision': 0.021965952773201538, 'recall': 0.049443757725587144, 'f1': 0.030418250950570342, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.056172436316133244, 'recall': 0.08075117370892018, 'f1': 0.06625577812018489, 'number': 1065} | 0.0374 | 0.0632 | 0.0470 | 0.2894 |
|
66 |
+
| 1.7726 | 7.0 | 70 | 1.7692 | {'precision': 0.02216252518468771, 'recall': 0.0407911001236094, 'f1': 0.028720626631853784, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.06599378881987578, 'recall': 0.07981220657276995, 'f1': 0.07224819379515512, 'number': 1065} | 0.0424 | 0.0592 | 0.0494 | 0.3088 |
|
67 |
+
| 1.7332 | 8.0 | 80 | 1.7277 | {'precision': 0.018210609659540775, 'recall': 0.02843016069221261, 'f1': 0.022200772200772198, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.08497316636851521, 'recall': 0.0892018779342723, 'f1': 0.08703618873110398, 'number': 1065} | 0.0496 | 0.0592 | 0.0540 | 0.3301 |
|
68 |
+
| 1.6941 | 9.0 | 90 | 1.6821 | {'precision': 0.024411508282476024, 'recall': 0.034610630407911, 'f1': 0.028629856850715743, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.11352885525070956, 'recall': 0.11267605633802817, 'f1': 0.11310084825636192, 'number': 1065} | 0.0672 | 0.0743 | 0.0705 | 0.3529 |
|
69 |
+
| 1.6579 | 10.0 | 100 | 1.6290 | {'precision': 0.03211805555555555, 'recall': 0.04573547589616811, 'f1': 0.03773584905660377, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.1650902837489252, 'recall': 0.18028169014084508, 'f1': 0.17235188509874327, 'number': 1065} | 0.0989 | 0.1149 | 0.1063 | 0.3897 |
|
70 |
+
| 1.5882 | 11.0 | 110 | 1.5600 | {'precision': 0.06073943661971831, 'recall': 0.08529048207663782, 'f1': 0.07095115681233934, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.22230538922155688, 'recall': 0.27887323943661974, 'f1': 0.2473969179508538, 'number': 1065} | 0.1481 | 0.1836 | 0.1639 | 0.4485 |
|
71 |
+
| 1.5164 | 12.0 | 120 | 1.4778 | {'precision': 0.111, 'recall': 0.13720642768850433, 'f1': 0.12271973466003316, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.28520877565463554, 'recall': 0.3784037558685446, 'f1': 0.3252623083131558, 'number': 1065} | 0.2130 | 0.2579 | 0.2333 | 0.5018 |
|
72 |
+
| 1.4203 | 13.0 | 130 | 1.3796 | {'precision': 0.1891304347826087, 'recall': 0.21508034610630408, 'f1': 0.20127241179872757, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.37259100642398285, 'recall': 0.49014084507042255, 'f1': 0.4233576642335766, 'number': 1065} | 0.2999 | 0.3492 | 0.3227 | 0.5474 |
|
73 |
+
| 1.2916 | 14.0 | 140 | 1.2617 | {'precision': 0.27813852813852813, 'recall': 0.3176761433868974, 'f1': 0.29659549913444894, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.4349112426035503, 'recall': 0.5521126760563381, 'f1': 0.48655357881671496, 'number': 1065} | 0.3713 | 0.4240 | 0.3959 | 0.5943 |
|
74 |
+
| 1.1747 | 15.0 | 150 | 1.1279 | {'precision': 0.3726775956284153, 'recall': 0.4215080346106304, 'f1': 0.39559164733178653, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.5030816640986132, 'recall': 0.6131455399061033, 'f1': 0.5526872619551417, 'number': 1065} | 0.4482 | 0.4987 | 0.4721 | 0.6467 |
|
75 |
+
| 1.0441 | 16.0 | 160 | 0.9940 | {'precision': 0.46846846846846846, 'recall': 0.5784919653893696, 'f1': 0.5176991150442478, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.5588709677419355, 'recall': 0.6507042253521127, 'f1': 0.6013015184381778, 'number': 1065} | 0.5126 | 0.5825 | 0.5453 | 0.7049 |
|
76 |
+
| 0.9042 | 17.0 | 170 | 0.8718 | {'precision': 0.567703109327984, 'recall': 0.6996291718170581, 'f1': 0.6267995570321152, 'number': 809} | {'precision': 0.020833333333333332, 'recall': 0.008403361344537815, 'f1': 0.011976047904191616, 'number': 119} | {'precision': 0.6192468619246861, 'recall': 0.6948356807511737, 'f1': 0.6548672566371683, 'number': 1065} | 0.5835 | 0.6558 | 0.6175 | 0.7473 |
|
77 |
+
| 0.7845 | 18.0 | 180 | 0.7760 | {'precision': 0.597478176527643, 'recall': 0.761433868974042, 'f1': 0.6695652173913043, 'number': 809} | {'precision': 0.16981132075471697, 'recall': 0.07563025210084033, 'f1': 0.10465116279069768, 'number': 119} | {'precision': 0.6678082191780822, 'recall': 0.7323943661971831, 'f1': 0.6986117330944918, 'number': 1065} | 0.6239 | 0.7050 | 0.6620 | 0.7693 |
|
78 |
+
| 0.7023 | 19.0 | 190 | 0.7265 | {'precision': 0.619188921859545, 'recall': 0.7737948084054388, 'f1': 0.6879120879120879, 'number': 809} | {'precision': 0.22580645161290322, 'recall': 0.11764705882352941, 'f1': 0.15469613259668508, 'number': 119} | {'precision': 0.6943722943722944, 'recall': 0.7530516431924883, 'f1': 0.7225225225225225, 'number': 1065} | 0.6472 | 0.7235 | 0.6833 | 0.7783 |
|
79 |
+
| 0.6331 | 20.0 | 200 | 0.7139 | {'precision': 0.6457446808510638, 'recall': 0.7503090234857849, 'f1': 0.6941109205260149, 'number': 809} | {'precision': 0.25609756097560976, 'recall': 0.17647058823529413, 'f1': 0.208955223880597, 'number': 119} | {'precision': 0.6934548467274234, 'recall': 0.7859154929577464, 'f1': 0.7367957746478873, 'number': 1065} | 0.6572 | 0.7351 | 0.6940 | 0.7900 |
|
80 |
+
| 0.5789 | 21.0 | 210 | 0.6960 | {'precision': 0.6496815286624203, 'recall': 0.7564894932014833, 'f1': 0.6990291262135921, 'number': 809} | {'precision': 0.25274725274725274, 'recall': 0.19327731092436976, 'f1': 0.21904761904761905, 'number': 119} | {'precision': 0.706081081081081, 'recall': 0.7849765258215963, 'f1': 0.7434415295686971, 'number': 1065} | 0.6635 | 0.7381 | 0.6988 | 0.7929 |
|
81 |
+
| 0.5417 | 22.0 | 220 | 0.6774 | {'precision': 0.6699346405228758, 'recall': 0.7601977750309024, 'f1': 0.7122177185871453, 'number': 809} | {'precision': 0.211864406779661, 'recall': 0.21008403361344538, 'f1': 0.2109704641350211, 'number': 119} | {'precision': 0.6981907894736842, 'recall': 0.7971830985915493, 'f1': 0.7444103463393249, 'number': 1065} | 0.6612 | 0.7471 | 0.7015 | 0.7959 |
|
82 |
+
| 0.481 | 23.0 | 230 | 0.6671 | {'precision': 0.6748400852878464, 'recall': 0.7824474660074165, 'f1': 0.7246708643388666, 'number': 809} | {'precision': 0.2540983606557377, 'recall': 0.2605042016806723, 'f1': 0.2572614107883818, 'number': 119} | {'precision': 0.718013468013468, 'recall': 0.8009389671361502, 'f1': 0.7572126054150022, 'number': 1065} | 0.6748 | 0.7612 | 0.7154 | 0.8022 |
|
83 |
+
| 0.4419 | 24.0 | 240 | 0.6534 | {'precision': 0.6799140708915145, 'recall': 0.7824474660074165, 'f1': 0.7275862068965516, 'number': 809} | {'precision': 0.2818181818181818, 'recall': 0.2605042016806723, 'f1': 0.27074235807860264, 'number': 119} | {'precision': 0.7332185886402753, 'recall': 0.8, 'f1': 0.7651549169286035, 'number': 1065} | 0.6882 | 0.7607 | 0.7226 | 0.8054 |
|
84 |
+
| 0.406 | 25.0 | 250 | 0.6649 | {'precision': 0.6862955032119914, 'recall': 0.792336217552534, 'f1': 0.7355134825014343, 'number': 809} | {'precision': 0.2782608695652174, 'recall': 0.2689075630252101, 'f1': 0.2735042735042735, 'number': 119} | {'precision': 0.731418918918919, 'recall': 0.8131455399061033, 'f1': 0.7701200533570476, 'number': 1065} | 0.6892 | 0.7722 | 0.7283 | 0.8077 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
|
86 |
|
87 |
### Framework versions
|
logs/events.out.tfevents.1718876194.HCIDC-SV-DMZ-ORC-NODE02.4012038.6
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1d625b1b8cb49ab3845ab28d2b761bee98877aaeaebddd4a5781a72e0aaea3d2
|
3 |
+
size 23141
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 450558212
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f1ca44f0577bd919b86efd144600cdf1db8ce42ee7bf5953ac677d82c5911273
|
3 |
size 450558212
|