See axolotl config
axolotl version: 0.8.0.dev0
save_total_limit: 2
mlflow_tracking_uri: http://127.0.0.1:7860
mlflow_experiment_name: Default
base_model: unsloth/Llama-3.3-70B-Instruct
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: false
load_in_4bit: true
strict: false
sequence_len: 12288
bf16: auto
fp16:
tf32: false
flash_attention: true
tokens:
- <hindsight>
- </hindsight>
- <|system|>
- <|user|>
- <|model|>
# Data
dataset_prepared_path: last_run_prepared
datasets:
- path: TheDrummer/Hindsight-R1-v1
type: custommetharme-masked
warmup_steps: 25
plugins:
- axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_swiglu: true
liger_fused_linear_cross_entropy: true
adapter: qlora
lora_model_dir:
lora_r: 64
lora_alpha: 64
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
lora_target_modules:
lora_modules_to_save:
- embed_tokens
- lm_head
save_safetensors: true
# WandB
#wandb_project: hindsight-70b
#wandb_entity:
# Iterations
num_epochs: 2
# Output
output_dir: ./Hindsight-70B-v1a-Workspace
hub_model_id: BeaverAI/Hindsight-70B-v1a-WS
hub_strategy: "end"
# Sampling
sample_packing: false
pad_to_sequence_len: true
# Batching
gradient_accumulation_steps: 3
micro_batch_size: 1 # 2x gpu
gradient_checkpointing: true
gradient_checkpointing_kwargs:
# use_reentrant: true
# Evaluation
val_set_size: 0.025
evals_per_epoch: 4
eval_table_size:
eval_max_new_tokens: 256
eval_sample_packing: true
eval_batch_size: 1
# Optimizer
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 0.00005
lr_scheduler: cosine_with_min_lr
lr_scheduler_kwargs:
min_lr: 0.000005
weight_decay: 0.01
max_grad_norm: 5.0
# Misc
train_on_inputs: false
group_by_length: false
early_stopping_patience:
local_rank:
logging_steps: 1
xformers_attention:
debug:
deepspeed: deepspeed_configs/zero3_bf16.json
fsdp:
fsdp_config:
# Checkpoints
resume_from_checkpoint:
saves_per_epoch: 1
Hindsight-70B-v1a-WS
This model is a fine-tuned version of unsloth/Llama-3.3-70B-Instruct on the TheDrummer/Hindsight-R1-v1 dataset. It achieves the following results on the evaluation set:
- Loss: 0.8403
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 3
- total_train_batch_size: 6
- total_eval_batch_size: 2
- optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine_with_min_lr
- lr_scheduler_warmup_steps: 25
- num_epochs: 2.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.3642 | 0.0011 | 1 | 1.4614 |
0.7745 | 0.2508 | 236 | 0.9048 |
0.7786 | 0.5016 | 472 | 0.8718 |
0.6914 | 0.7524 | 708 | 0.8524 |
0.6159 | 1.0032 | 944 | 0.8359 |
0.5954 | 1.2540 | 1180 | 0.8505 |
0.6593 | 1.5048 | 1416 | 0.8416 |
0.567 | 1.7556 | 1652 | 0.8403 |
Framework versions
- PEFT 0.14.0
- Transformers 4.49.0
- Pytorch 2.6.0+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 0
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
HF Inference deployability: The model has no pipeline_tag.
Model tree for BeaverAI/Hindsight-70B-v1a-WS
Base model
meta-llama/Llama-3.1-70B
Finetuned
meta-llama/Llama-3.3-70B-Instruct
Finetuned
unsloth/Llama-3.3-70B-Instruct