llama-7b-sst-2
This model is a fine-tuned version of meta-llama/Llama-3.1-8B-Instruct on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.2342
- Accuracy: 0.9117
- F1: 0.9126
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
No log | 0.1900 | 100 | 0.4794 | 0.7810 | 0.7975 |
No log | 0.3800 | 200 | 0.3449 | 0.8555 | 0.8591 |
No log | 0.5701 | 300 | 0.3052 | 0.8796 | 0.8832 |
No log | 0.7601 | 400 | 0.2865 | 0.8819 | 0.8847 |
1.638 | 0.9501 | 500 | 0.2738 | 0.8922 | 0.8932 |
1.638 | 1.1387 | 600 | 0.2604 | 0.9014 | 0.9025 |
1.638 | 1.3287 | 700 | 0.2683 | 0.9060 | 0.9040 |
1.638 | 1.5188 | 800 | 0.2525 | 0.9106 | 0.9099 |
1.638 | 1.7088 | 900 | 0.2596 | 0.9083 | 0.9119 |
0.9792 | 1.8988 | 1000 | 0.2422 | 0.9128 | 0.9126 |
0.9792 | 2.0874 | 1100 | 0.2426 | 0.9106 | 0.9101 |
0.9792 | 2.2774 | 1200 | 0.2465 | 0.9151 | 0.9176 |
0.9792 | 2.4675 | 1300 | 0.2411 | 0.9117 | 0.9118 |
0.9792 | 2.6575 | 1400 | 0.2356 | 0.9106 | 0.9114 |
0.8907 | 2.8475 | 1500 | 0.2342 | 0.9117 | 0.9126 |
Framework versions
- PEFT 0.14.0
- Transformers 4.47.1
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 8
Model tree for BayanDuygu/llama-7b-sst-2
Base model
meta-llama/Llama-3.1-8B
Finetuned
meta-llama/Llama-3.1-8B-Instruct