llama-3b-offense / README.md
BayanDuygu's picture
Model save
b616fdf verified
metadata
library_name: peft
license: llama3.2
base_model: meta-llama/Llama-3.2-3B-Instruct
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
model-index:
  - name: llama-3b-offense
    results: []

llama-3b-offense

This model is a fine-tuned version of meta-llama/Llama-3.2-3B-Instruct on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5348
  • Accuracy: 0.7547
  • F1: 0.4462

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
No log 0.9662 100 0.6581 0.6802 0.3560
No log 1.9275 200 0.5982 0.7105 0.4276
No log 2.8889 300 0.5637 0.7349 0.4466
No log 3.8502 400 0.5506 0.7349 0.4356
2.3869 4.8116 500 0.5452 0.75 0.4769
2.3869 5.7729 600 0.5400 0.7535 0.4619
2.3869 6.7343 700 0.5322 0.7593 0.5036
2.3869 7.6957 800 0.5339 0.7570 0.4709
2.3869 8.6570 900 0.5316 0.7616 0.4888
1.9359 9.6184 1000 0.5348 0.7547 0.4462

Framework versions

  • PEFT 0.14.0
  • Transformers 4.47.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0