llama-1b-irony

This model is a fine-tuned version of meta-llama/Llama-3.2-1B-Instruct on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6571
  • Accuracy: 0.6658
  • F1: 0.5112

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
No log 1.0 30 0.8135 0.6441 0.5114
No log 2.0 60 0.7566 0.6122 0.5529
No log 3.0 90 0.7246 0.6301 0.5338
No log 4.0 120 0.6850 0.6467 0.5249
No log 5.0 150 0.6739 0.6722 0.5353
No log 6.0 180 0.6852 0.6556 0.4706
No log 7.0 210 0.6446 0.6862 0.5669
No log 8.0 240 0.6489 0.6747 0.5487
No log 9.0 270 0.6449 0.6747 0.5422
No log 10.0 300 0.6571 0.6658 0.5112

Framework versions

  • PEFT 0.14.0
  • Transformers 4.47.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
29
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for BayanDuygu/llama-1b-irony

Adapter
(156)
this model