Bakanayatsu/NeuralHermes-2.5-Mistral-7B-laser-Q4_K_S-GGUF
This model was converted to GGUF format from mlabonne/NeuralHermes-2.5-Mistral-7B-laser
using llama.cpp via the ggml.ai's GGUF-my-repo space.
Refer to the original model card for more details on the model.
Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
brew install llama.cpp
Invoke the llama.cpp server or the CLI.
CLI:
llama-cli --hf-repo Bakanayatsu/NeuralHermes-2.5-Mistral-7B-laser-Q4_K_S-GGUF --hf-file neuralhermes-2.5-mistral-7b-laser-q4_k_s-imat.gguf -p "The meaning to life and the universe is"
Server:
llama-server --hf-repo Bakanayatsu/NeuralHermes-2.5-Mistral-7B-laser-Q4_K_S-GGUF --hf-file neuralhermes-2.5-mistral-7b-laser-q4_k_s-imat.gguf -c 2048
Note: You can also use this checkpoint directly through the usage steps listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
git clone https://github.com/ggerganov/llama.cpp
Step 2: Move into the llama.cpp folder and build it with LLAMA_CURL=1
flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
cd llama.cpp && LLAMA_CURL=1 make
Step 3: Run inference through the main binary.
./llama-cli --hf-repo Bakanayatsu/NeuralHermes-2.5-Mistral-7B-laser-Q4_K_S-GGUF --hf-file neuralhermes-2.5-mistral-7b-laser-q4_k_s-imat.gguf -p "The meaning to life and the universe is"
or
./llama-server --hf-repo Bakanayatsu/NeuralHermes-2.5-Mistral-7B-laser-Q4_K_S-GGUF --hf-file neuralhermes-2.5-mistral-7b-laser-q4_k_s-imat.gguf -c 2048
- Downloads last month
- 9
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model's library.
Model tree for Bakanayatsu/NeuralHermes-2.5-Mistral-7B-laser-Q4_K_S-GGUF
Base model
mistralai/Mistral-7B-v0.1
Finetuned
teknium/OpenHermes-2.5-Mistral-7B
Dataset used to train Bakanayatsu/NeuralHermes-2.5-Mistral-7B-laser-Q4_K_S-GGUF
Evaluation results
- normalized accuracy on AI2 Reasoning Challenge (25-Shot)test set Open LLM Leaderboard66.380
- normalized accuracy on HellaSwag (10-Shot)validation set Open LLM Leaderboard85.090
- accuracy on MMLU (5-Shot)test set Open LLM Leaderboard63.430
- mc2 on TruthfulQA (0-shot)validation set Open LLM Leaderboard54.950
- accuracy on Winogrande (5-shot)validation set Open LLM Leaderboard78.140
- accuracy on GSM8k (5-shot)test set Open LLM Leaderboard55.720