gpt2-kl_01_04-hs_cn
This model is a fine-tuned version of gpt2-medium on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.5376
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 4
- seed: 21
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
73.5506 | 0.02 | 10 | 69.5766 |
46.1042 | 0.04 | 20 | 32.9900 |
13.5751 | 0.06 | 30 | 10.6451 |
6.8244 | 0.08 | 40 | 4.2551 |
3.5786 | 0.1 | 50 | 2.0237 |
1.421 | 0.12 | 60 | 1.0729 |
1.0404 | 0.14 | 70 | 0.8577 |
0.9443 | 0.16 | 80 | 0.7279 |
0.7448 | 0.18 | 90 | 0.6709 |
0.7241 | 0.2 | 100 | 0.6761 |
0.6457 | 0.22 | 110 | 0.6416 |
0.634 | 0.24 | 120 | 0.6262 |
0.6733 | 0.26 | 130 | 0.6190 |
0.6495 | 0.28 | 140 | 0.5887 |
0.6291 | 0.3 | 150 | 0.5799 |
0.6182 | 0.32 | 160 | 0.5886 |
0.5417 | 0.34 | 170 | 0.5625 |
0.6596 | 0.36 | 180 | 0.5619 |
0.6506 | 0.38 | 190 | 0.5630 |
0.5963 | 0.4 | 200 | 0.5525 |
0.7053 | 0.42 | 210 | 0.5520 |
0.6541 | 0.44 | 220 | 0.5480 |
0.5562 | 0.46 | 230 | 0.5498 |
0.5714 | 0.48 | 240 | 0.5471 |
0.5677 | 0.5 | 250 | 0.5511 |
0.5739 | 0.52 | 260 | 0.5488 |
0.5825 | 0.54 | 270 | 0.5433 |
0.625 | 0.56 | 280 | 0.5422 |
0.5998 | 0.58 | 290 | 0.5401 |
0.562 | 0.6 | 300 | 0.5393 |
0.5743 | 0.62 | 310 | 0.5368 |
0.6688 | 0.64 | 320 | 0.5387 |
0.536 | 0.66 | 330 | 0.5390 |
0.5299 | 0.68 | 340 | 0.5376 |
Framework versions
- Transformers 4.29.0.dev0
- Pytorch 1.12.0a0+bd13bc6
- Datasets 2.12.0
- Tokenizers 0.13.3
- Downloads last month
- 16
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.