Baidicoot's picture
Upload folder using huggingface_hub
91479c4 verified
|
raw
history blame
3.95 kB
metadata
base_model: google/gemma-2b
library_name: peft
license: gemma
metrics:
  - accuracy
tags:
  - trl
  - reward-trainer
  - generated_from_trainer
model-index:
  - name: reward_modeling
    results: []

Visualize in Weights & Biases

reward_modeling

This model is a fine-tuned version of google/gemma-2b on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4036
  • Accuracy: 0.8058

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3.0

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.9241 0.0787 5 0.6996 0.5678
0.7708 0.1575 10 0.6284 0.6660
0.7875 0.2362 15 0.5749 0.7244
0.6575 0.3150 20 0.5360 0.7390
0.6802 0.3937 25 0.5087 0.7432
0.3982 0.4724 30 0.4890 0.7578
0.4555 0.5512 35 0.4775 0.7599
0.8838 0.6299 40 0.4683 0.7662
0.4692 0.7087 45 0.4611 0.7662
0.5455 0.7874 50 0.4531 0.7620
0.5696 0.8661 55 0.4459 0.7662
0.7453 0.9449 60 0.4414 0.7766
0.5369 1.0236 65 0.4371 0.7829
0.3994 1.1024 70 0.4334 0.7850
0.4235 1.1811 75 0.4298 0.7912
0.4811 1.2598 80 0.4266 0.7912
0.5072 1.3386 85 0.4253 0.7912
0.4405 1.4173 90 0.4228 0.7850
0.5349 1.4961 95 0.4196 0.7871
0.3342 1.5748 100 0.4170 0.7829
0.5271 1.6535 105 0.4149 0.7933
0.3463 1.7323 110 0.4136 0.7975
0.4867 1.8110 115 0.4128 0.7996
0.3221 1.8898 120 0.4125 0.7996
0.3542 1.9685 125 0.4116 0.7996
0.5465 2.0472 130 0.4107 0.7996
0.3427 2.1260 135 0.4101 0.7996
0.4787 2.2047 140 0.4087 0.8038
0.4229 2.2835 145 0.4073 0.8017
0.4514 2.3622 150 0.4063 0.8038
0.5116 2.4409 155 0.4051 0.8038
0.3234 2.5197 160 0.4045 0.8058
0.3993 2.5984 165 0.4040 0.8058
0.3264 2.6772 170 0.4037 0.8058
0.3316 2.7559 175 0.4035 0.8038
0.4855 2.8346 180 0.4035 0.8038
0.536 2.9134 185 0.4036 0.8058

Framework versions

  • PEFT 0.11.1
  • Transformers 4.42.3
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1