hubert_xlarge_emodb / README.md
Bagus's picture
Model save
0b40a7c verified
|
raw
history blame
4.85 kB
metadata
license: apache-2.0
base_model: facebook/hubert-xlarge-ll60k
tags:
  - generated_from_trainer
model-index:
  - name: hubert_xlarge_emodb
    results: []

hubert_xlarge_emodb

This model is a fine-tuned version of facebook/hubert-xlarge-ll60k on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8345
  • Uar: 0.8889
  • Acc: 0.9118

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Uar Acc
No log 0.2 5 1.3815 0.25 0.1985
No log 0.39 10 1.3436 0.5285 0.5956
No log 0.59 15 1.3028 0.5741 0.6618
No log 0.78 20 1.2412 0.6019 0.6838
No log 0.98 25 1.1652 0.75 0.8015
1.2216 1.18 30 1.0883 0.7315 0.7868
1.2216 1.37 35 1.0309 0.75 0.8015
1.2216 1.57 40 1.0217 0.8335 0.8603
1.2216 1.76 45 1.0084 0.8714 0.8529
1.2216 1.96 50 0.9415 0.7778 0.8235
0.5781 2.16 55 0.9293 0.7870 0.8309
0.5781 2.35 60 0.8470 0.9448 0.9412
0.5781 2.55 65 0.8673 0.8333 0.8676
0.5781 2.75 70 0.8454 0.9074 0.9265
0.5781 2.94 75 0.8139 0.9167 0.9338
0.2652 3.14 80 0.8254 0.8981 0.9191
0.2652 3.33 85 0.8233 0.9074 0.9265
0.2652 3.53 90 0.7989 0.9259 0.9412
0.2652 3.73 95 0.7939 0.9584 0.9632
0.2652 3.92 100 0.8093 0.9167 0.9338
0.1537 4.12 105 0.8138 0.9167 0.9338
0.1537 4.31 110 0.7898 0.9539 0.9559
0.1537 4.51 115 0.8138 0.9074 0.9265
0.1537 4.71 120 0.8463 0.8704 0.8971
0.1537 4.9 125 0.8643 0.8519 0.8824
0.1615 5.1 130 0.8137 0.9074 0.9265
0.1615 5.29 135 0.7750 0.9724 0.9706
0.1615 5.49 140 0.7745 0.9724 0.9706
0.1615 5.69 145 0.8123 0.9074 0.9265
0.1615 5.88 150 0.8693 0.8426 0.875
0.0762 6.08 155 0.9067 0.7870 0.8309
0.0762 6.27 160 0.9123 0.7870 0.8309
0.0762 6.47 165 0.8664 0.8426 0.875
0.0762 6.67 170 0.8167 0.9074 0.9265
0.0762 6.86 175 0.8104 0.9259 0.9412
0.1321 7.06 180 0.8222 0.8981 0.9191
0.1321 7.25 185 0.8339 0.8889 0.9118
0.1321 7.45 190 0.8468 0.8704 0.8971
0.1321 7.65 195 0.8453 0.8704 0.8971
0.1321 7.84 200 0.8453 0.8704 0.8971
0.027 8.04 205 0.8346 0.8889 0.9118
0.027 8.24 210 0.8292 0.8889 0.9118
0.027 8.43 215 0.8276 0.8889 0.9118
0.027 8.63 220 0.8353 0.8889 0.9118
0.027 8.82 225 0.8376 0.8889 0.9118
0.0499 9.02 230 0.8327 0.8889 0.9118
0.0499 9.22 235 0.8317 0.8889 0.9118
0.0499 9.41 240 0.8330 0.8889 0.9118
0.0499 9.61 245 0.8343 0.8889 0.9118
0.0499 9.8 250 0.8345 0.8889 0.9118

Framework versions

  • Transformers 4.32.0
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.13.3