tags: | |
- image-classification | |
- ecology | |
- fungi | |
library_name: DanishFungi | |
license: cc-by-nc-4.0 | |
# Model card for BVRA/tf_efficientnet_b1.in1k_ft_df20m_299 | |
## Model Details | |
- **Model Type:** Danish Fungi Classification | |
- **Model Stats:** | |
- Params (M): ?? | |
- Image size: 299 x 299 | |
- **Papers:** | |
- **Original:** ?? | |
- **Train Dataset:** DF20M --> https://sites.google.com/view/danish-fungi-dataset | |
## Model Usage | |
### Image Embeddings | |
```python | |
import timm | |
import torch | |
import torchvision.transforms as T | |
from PIL import Image | |
from urllib.request import urlopen | |
model = timm.create_model("hf-hub:BVRA/tf_efficientnet_b1.in1k_ft_df20m_299", pretrained=True) | |
model = model.eval() | |
train_transforms = T.Compose([T.Resize(299), | |
T.ToTensor(), | |
T.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]) | |
img = Image.open(PATH_TO_YOUR_IMAGE) | |
output = model(train_transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor | |
# output is a (1, num_features) shaped tensor | |
``` | |
## Citation | |
https://openaccess.thecvf.com/content/WACV2022/papers/Picek_Danish_Fungi_2020_-_Not_Just_Another_Image_Recognition_Dataset_WACV_2022_paper.pdf | |