|
--- |
|
tags: |
|
- image-classification |
|
- ecology |
|
- animals |
|
- re-identification |
|
library_name: wildlife-datasets |
|
license: cc-by-nc-4.0 |
|
--- |
|
# Model card for MegaDescriptor-S-224 |
|
|
|
A Swin-S image feature model. Supervisely pre-trained on animal re-identification datasets. |
|
|
|
|
|
## Model Details |
|
- **Model Type:** Animal re-identification / feature backbone |
|
- **Model Stats:** |
|
- Params (M): 49.6 |
|
- Image size: 224 x 224 |
|
- Architecture: swin_small_patch4_window7_224 |
|
- **Paper:** [WildlifeDatasets_An_Open-Source_Toolkit_for_Animal_Re-Identification](https://openaccess.thecvf.com/content/WACV2024/html/Cermak_WildlifeDatasets_An_Open-Source_Toolkit_for_Animal_Re-Identification_WACV_2024_paper.html) |
|
- **Related Papers:** |
|
- [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030) |
|
- [DINOv2: Learning Robust Visual Features without Supervision](https://arxiv.org/pdf/2304.07193.pdf) |
|
- **Pretrain Dataset:** All available re-identification datasets --> https://github.com/WildlifeDatasets/wildlife-datasets |
|
|
|
## Model Usage |
|
### Image Embeddings |
|
```python |
|
|
|
import timm |
|
import torch |
|
import torchvision.transforms as T |
|
|
|
from PIL import Image |
|
from urllib.request import urlopen |
|
|
|
model = timm.create_model("hf-hub:BVRA/MegaDescriptor-S-224", pretrained=True) |
|
model = model.eval() |
|
|
|
train_transforms = T.Compose([T.Resize(224), |
|
T.ToTensor(), |
|
T.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]) |
|
|
|
img = Image.open(urlopen( |
|
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' |
|
)) |
|
|
|
output = model(train_transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor |
|
# output is a (1, num_features) shaped tensor |
|
``` |
|
|
|
## Citation |
|
|
|
```bibtex |
|
@inproceedings{vcermak2024wildlifedatasets, |
|
title={WildlifeDatasets: An open-source toolkit for animal re-identification}, |
|
author={{\v{C}}erm{\'a}k, Vojt{\v{e}}ch and Picek, Lukas and Adam, Luk{\'a}{\v{s}} and Papafitsoros, Kostas}, |
|
booktitle={Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision}, |
|
pages={5953--5963}, |
|
year={2024} |
|
} |
|
``` |