|
--- |
|
language: ko |
|
tags: |
|
- korean |
|
--- |
|
|
|
https://github.com/BM-K/Sentence-Embedding-is-all-you-need |
|
|
|
# Korean-Sentence-Embedding |
|
๐ญ Korean sentence embedding repository. You can download the pre-trained models and inference right away, also it provides environments where individuals can train models. |
|
|
|
## Quick tour |
|
```python |
|
import torch |
|
from transformers import AutoModel, AutoTokenizer |
|
|
|
def cal_score(a, b): |
|
if len(a.shape) == 1: a = a.unsqueeze(0) |
|
if len(b.shape) == 1: b = b.unsqueeze(0) |
|
|
|
a_norm = a / a.norm(dim=1)[:, None] |
|
b_norm = b / b.norm(dim=1)[:, None] |
|
return torch.mm(a_norm, b_norm.transpose(0, 1)) * 100 |
|
|
|
model = AutoModel.from_pretrained('BM-K/KoSimCSE-bert') |
|
AutoTokenizer.from_pretrained('BM-K/KoSimCSE-bert') |
|
|
|
sentences = ['์นํ๊ฐ ๋คํ์ ๊ฐ๋ก ์ง๋ฌ ๋จน์ด๋ฅผ ์ซ๋๋ค.', |
|
'์นํ ํ ๋ง๋ฆฌ๊ฐ ๋จน์ด ๋ค์์ ๋ฌ๋ฆฌ๊ณ ์๋ค.', |
|
'์์ญ์ด ํ ๋ง๋ฆฌ๊ฐ ๋๋ผ์ ์ฐ์ฃผํ๋ค.'] |
|
|
|
inputs = tokenizer(sentences, padding=True, truncation=True, return_tensors="pt") |
|
embeddings, _ = model(**inputs, return_dict=False) |
|
|
|
score01 = cal_score(embeddings[0][0], embeddings[1][0]) |
|
score02 = cal_score(embeddings[0][0], embeddings[2][0]) |
|
``` |
|
|
|
## Performance |
|
- Semantic Textual Similarity test set results <br> |
|
|
|
| Model | AVG | Cosine Pearson | Cosine Spearman | Euclidean Pearson | Euclidean Spearman | Manhattan Pearson | Manhattan Spearman | Dot Pearson | Dot Spearman | |
|
|------------------------|:----:|:----:|:----:|:----:|:----:|:----:|:----:|:----:|:----:| |
|
| KoSBERT<sup>โ </sup><sub>SKT</sub> | 77.40 | 78.81 | 78.47 | 77.68 | 77.78 | 77.71 | 77.83 | 75.75 | 75.22 | |
|
| KoSBERT | 80.39 | 82.13 | 82.25 | 80.67 | 80.75 | 80.69 | 80.78 | 77.96 | 77.90 | |
|
| KoSRoBERTa | 81.64 | 81.20 | 82.20 | 81.79 | 82.34 | 81.59 | 82.20 | 80.62 | 81.25 | |
|
| | | | | | | | | | |
|
| KoSentenceBART | 77.14 | 79.71 | 78.74 | 78.42 | 78.02 | 78.40 | 78.00 | 74.24 | 72.15 | |
|
| KoSentenceT5 | 77.83 | 80.87 | 79.74 | 80.24 | 79.36 | 80.19 | 79.27 | 72.81 | 70.17 | |
|
| | | | | | | | | | |
|
| KoSimCSE-BERT<sup>โ </sup><sub>SKT</sub> | 81.32 | 82.12 | 82.56 | 81.84 | 81.63 | 81.99 | 81.74 | 79.55 | 79.19 | |
|
| KoSimCSE-BERT | 83.37 | 83.22 | 83.58 | 83.24 | 83.60 | 83.15 | 83.54 | 83.13 | 83.49 | |
|
| KoSimCSE-RoBERTa | 83.65 | 83.60 | 83.77 | 83.54 | 83.76 | 83.55 | 83.77 | 83.55 | 83.64 | |
|
| | | | | | | | | | | |
|
| KoSimCSE-BERT-multitask | 85.71 | 85.29 | 86.02 | 85.63 | 86.01 | 85.57 | 85.97 | 85.26 | 85.93 | |
|
| KoSimCSE-RoBERTa-multitask | 85.77 | 85.08 | 86.12 | 85.84 | 86.12 | 85.83 | 86.12 | 85.03 | 85.99 | |