YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

KoMiniLM

🐣 Korean mini language model

Overview

Current language models usually consist of hundreds of millions of parameters which brings challenges for fine-tuning and online serving in real-life applications due to latency and capacity constraints. In this project, we release a light weight korean language model to address the aforementioned shortcomings of existing language models.

Quick tour

from transformers import AutoTokenizer, AutoModel

tokenizer = AutoTokenizer.from_pretrained("BM-K/KoMiniLM") # 23M model
model = AutoModel.from_pretrained("BM-K/KoMiniLM")

inputs = tokenizer("안녕 세상아!", return_tensors="pt")
outputs = model(**inputs)

Update history

** Updates on 2022.06.20 **

  • Release KoMiniLM-bert-68M

** Updates on 2022.05.24 **

  • Release KoMiniLM-bert-23M

Pre-training

Teacher Model: KLUE-BERT(base)

Object

Self-Attention Distribution and Self-Attention Value-Relation [Wang et al., 2020] were distilled from each discrete layer of the teacher model to the student model. Wang et al. distilled in the last layer of the transformer, but that was not the case in this project.

Data sets

Data News comments News article
size 10G 10G

Config

  • KoMiniLM-23M
{
  "architectures": [
    "BertForPreTraining"
  ],
  "attention_probs_dropout_prob": 0.1,
  "classifier_dropout": null,
  "hidden_act": "gelu",
  "hidden_dropout_prob": 0.1,
  "hidden_size": 384,
  "initializer_range": 0.02,
  "intermediate_size": 1536,
  "layer_norm_eps": 1e-12,
  "max_position_embeddings": 512,
  "model_type": "bert",
  "num_attention_heads": 12,
  "num_hidden_layers": 6,
  "output_attentions": true,
  "pad_token_id": 0,
  "position_embedding_type": "absolute",
  "return_dict": false,
  "torch_dtype": "float32",
  "transformers_version": "4.13.0",
  "type_vocab_size": 2,
  "use_cache": true,
  "vocab_size": 32000
}

Performance on subtasks

  • The results of our fine-tuning experiments are an average of 3 runs for each task.
cd KoMiniLM-Finetune
bash scripts/run_all_kominilm.sh
#Param Average NSMC
(Acc)
Naver NER
(F1)
PAWS
(Acc)
KorNLI
(Acc)
KorSTS
(Spearman)
Question Pair
(Acc)
KorQuaD
(Dev)
(EM/F1)
KoBERT(KLUE) 110M 86.84 90.20±0.07 87.11±0.05 81.36±0.21 81.06±0.33 82.47±0.14 95.03±0.44 84.43±0.18 /
93.05±0.04
KcBERT 108M 78.94 89.60±0.10 84.34±0.13 67.02±0.42 74.17±0.52 76.57±0.51 93.97±0.27 60.87±0.27 /
85.01±0.14
KoBERT(SKT) 92M 79.73 89.28±0.42 87.54±0.04 80.93±0.91 78.18±0.45 75.98±2.81 94.37±0.31 51.94±0.60 /
79.69±0.66
DistilKoBERT 28M 74.73 88.39±0.08 84.22±0.01 61.74±0.45 70.22±0.14 72.11±0.27 92.65±0.16 52.52±0.48 /
76.00±0.71
KoMiniLM 68M 85.90 89.84±0.02 85.98±0.09 80.78±0.30 79.28±0.17 81.00±0.07 94.89±0.37 83.27±0.08 /
92.08±0.06
KoMiniLM 23M 84.79 89.67±0.03 84.79±0.09 78.67±0.45 78.10±0.07 78.90±0.11 94.81±0.12 82.11±0.42 /
91.21±0.29
  • NSMC (Naver Sentiment Movie Corpus)
  • Naver NER (NER task on Naver NLP Challenge 2018)
  • PAWS (Korean Paraphrase Adversaries from Word Scrambling)
  • KorNLI/KorSTS (Korean Natural Language Understanding)
  • Question Pair (Paired Question)
  • KorQuAD (The Korean Question Answering Dataset)


User Contributed Examples

-

Reference

Downloads last month
284
Safetensors
Model size
23.3M params
Tensor type
I64
·
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.