File size: 10,531 Bytes
c23cdae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
# coding=utf-8
# Copyright 2021 The LG AI Research EXAONE Lab. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" EXAONE model configuration """
from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging
logger = logging.get_logger(__name__)
EXAONE_PRETRAINED_CONFIG_ARCHIVE_MAP = {
}
class ExaoneConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a :class:`~transformers.ExaoneModel`. It is used to
instantiate a EXAONE model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the Exaone
Configuration objects inherit from :class:`~transformers.PretrainedConfig` and can be used to control the model
outputs. Read the documentation from :class:`~transformers.PretrainedConfig` for more information.
Args:
vocab_size (:obj:`int`, `optional`, defaults to 102400):
Vocabulary size of the EXAONE model. Defines the number of different tokens that can be represented by the
:obj:`inputs_ids` passed when calling :class:`~transformers.ExaoneModel`. Vocabulary size of the model.
Defines the different tokens that can be represented by the `inputs_ids` passed to the forward method of
:class:`~transformers.EXAONEModel`.
max_position_embeddings (:obj:`int`, `optional`, defaults to 2048):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
hidden_size (:obj:`int`, `optional`, defaults to 2048):
Dimensionality of the encoder layers and the pooler layer.
num_layers (:obj:`int`, `optional`, defaults to 32):
Number of hidden layers in the Transformer encoder.
num_attention_heads (:obj:`int`, `optional`, defaults to 32):
Number of attention heads for each attention layer in the Transformer decoder.
num_key_value_heads (:obj:`int`, `optional`):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
`num_attention_heads`.
intermediate_size (:obj:`int`, `optional`, defaults to `hidden_size * 4`):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
activation_function (:obj:`str` or :obj:`function`, `optional`, defaults to :obj:`"silu"`):
The non-linear activation function (function or string) in the decoder.
rope_theta (:obj:`float`, `optional`, defaults to 10000.0):
The base period of the RoPE embeddings.
rope_scaling (:obj:`Dict`, `optional`):
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
accordingly.
Expected contents:
`rope_type` (:obj:`str`):
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
'llama3'], with 'default' being the original RoPE implementation.
`factor` (:obj:`float`, `optional`):
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
most scaling types, a `factor` of x will enable the model to handle sequences of length x *
original maximum pre-trained length.
`original_max_position_embeddings` (:obj:`int`, `optional`):
Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
pretraining.
`attention_factor` (:obj:`float`, `optional`):
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
computation. If unspecified, it defaults to value recommended by the implementation, using the
`factor` field to infer the suggested value.
`beta_fast` (:obj:`float`, `optional`):
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
ramp function. If unspecified, it defaults to 32.
`beta_slow` (:obj:`float`, `optional`):
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
ramp function. If unspecified, it defaults to 1.
`short_factor` (:obj:`List[float]`, `optional`):
Only used with 'longrope'. The scaling factor to be applied to short contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2
`long_factor` (:obj:`List[float]`, `optional`):
Only used with 'longrope'. The scaling factor to be applied to long contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2
`low_freq_factor` (:obj:`float`, `optional`):
Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
`high_freq_factor` (:obj:`float`, `optional`):
Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
embed_dropout (:obj:`float`, `optional`, defaults to 0.0):
The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.
attention_dropout (:obj:`float`, `optional`, defaults to 0.0):
The dropout ratio for the attention probabilities.
layer_norm_epsilon (:obj:`float`, `optional`, defaults to 1e-5):
The epsilon used by the layer normalization layers.
initializer_range (:obj:`float`, `optional`, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
use_cache (:obj:`bool`, `optional`, defaults to :obj:`True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if ``config.is_decoder=True``.
bos_token_id (:obj:`int`, `optional`, defaults to 0):
Beginning of stream token id.
eos_token_id (:obj:`int`, `optional`, defaults to 2):
End of stream token id.
tie_word_embeddings (:obj:`bool`, `optional`, defaults to :obj:`True`):
Whether to tie weight embeddings
gradient_checkpointing (:obj:`bool`, `optional`, defaults to :obj:`False`):
If True, use gradient checkpointing to save memory at the expense of slower backward pass.
Example::
>>> from transformers import EXAONEModel, ExaoneConfig
>>> # Initializing a EXAONE configuration
>>> configuration = ExaoneConfig()
>>> # Initializing a model from configuration
>>> model = EXAONEModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
"""
model_type = "exaone"
keys_to_ignore_at_inference = ["past_key_values"]
attribute_map = {"num_hidden_layers": "num_layers"}
def __init__(
self,
vocab_size=102400,
max_position_embeddings=2048,
hidden_size=2048,
num_layers=32,
num_attention_heads=32,
num_key_value_heads=None,
intermediate_size=None,
activation_function="silu",
rope_theta=10000.0,
rope_scaling=None,
embed_dropout=0.0,
attention_dropout=0.0,
layer_norm_epsilon=1e-5,
initializer_range=0.02,
use_cache=True,
bos_token_id=0,
eos_token_id=2,
tie_word_embeddings=True,
**kwargs
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.num_layers = num_layers
self.num_attention_heads = num_attention_heads
self.num_hidden_layers = num_layers
if num_key_value_heads is None:
num_key_value_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
if intermediate_size:
self.intermediate_size = intermediate_size
else:
self.intermediate_size = hidden_size * 4
self.activation_function = activation_function
self.embed_dropout = embed_dropout
self.attention_dropout = attention_dropout
self.layer_norm_epsilon = layer_norm_epsilon
self.initializer_range = initializer_range
self.use_cache = use_cache
self.rope_theta = rope_theta
self.rope_scaling = rope_scaling
self.bos_token_id = bos_token_id
self.eos_token_id = eos_token_id
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs)
|