BM-K commited on
Commit
c23cdae
·
verified ·
1 Parent(s): 4ce30db

Upload ExaoneForCausalLM

Browse files
config.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "exaone_sft_dcs/step-620/",
3
+ "activation_function": "silu",
4
+ "architectures": [
5
+ "ExaoneForCausalLM"
6
+ ],
7
+ "attention_dropout": 0.0,
8
+ "auto_map": {
9
+ "AutoConfig": "configuration_exaone.ExaoneConfig",
10
+ "AutoModelForCausalLM": "modeling_exaone.ExaoneForCausalLM",
11
+ "AutoModelForSequenceClassification": "LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct--modeling_exaone.ExaoneForSequenceClassification"
12
+ },
13
+ "bos_token_id": 1,
14
+ "embed_dropout": 0.0,
15
+ "eos_token_id": 361,
16
+ "hidden_size": 4096,
17
+ "initializer_range": 0.02,
18
+ "intermediate_size": 14336,
19
+ "layer_norm_epsilon": 1e-05,
20
+ "max_position_embeddings": 4096,
21
+ "model_type": "exaone",
22
+ "num_attention_heads": 32,
23
+ "num_key_value_heads": 8,
24
+ "num_layers": 32,
25
+ "pad_token_id": 0,
26
+ "rope_scaling": null,
27
+ "rope_theta": 500000.0,
28
+ "tie_word_embeddings": false,
29
+ "torch_dtype": "bfloat16",
30
+ "transformers_version": "4.42.3",
31
+ "use_cache": true,
32
+ "vocab_size": 102400
33
+ }
configuration_exaone.py ADDED
@@ -0,0 +1,186 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2021 The LG AI Research EXAONE Lab. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ EXAONE model configuration """
16
+ from transformers.configuration_utils import PretrainedConfig
17
+ from transformers.utils import logging
18
+
19
+
20
+ logger = logging.get_logger(__name__)
21
+
22
+ EXAONE_PRETRAINED_CONFIG_ARCHIVE_MAP = {
23
+ }
24
+
25
+
26
+ class ExaoneConfig(PretrainedConfig):
27
+ r"""
28
+ This is the configuration class to store the configuration of a :class:`~transformers.ExaoneModel`. It is used to
29
+ instantiate a EXAONE model according to the specified arguments, defining the model architecture. Instantiating a
30
+ configuration with the defaults will yield a similar configuration to that of the Exaone
31
+
32
+ Configuration objects inherit from :class:`~transformers.PretrainedConfig` and can be used to control the model
33
+ outputs. Read the documentation from :class:`~transformers.PretrainedConfig` for more information.
34
+
35
+
36
+ Args:
37
+ vocab_size (:obj:`int`, `optional`, defaults to 102400):
38
+ Vocabulary size of the EXAONE model. Defines the number of different tokens that can be represented by the
39
+ :obj:`inputs_ids` passed when calling :class:`~transformers.ExaoneModel`. Vocabulary size of the model.
40
+ Defines the different tokens that can be represented by the `inputs_ids` passed to the forward method of
41
+ :class:`~transformers.EXAONEModel`.
42
+ max_position_embeddings (:obj:`int`, `optional`, defaults to 2048):
43
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
44
+ just in case (e.g., 512 or 1024 or 2048).
45
+ hidden_size (:obj:`int`, `optional`, defaults to 2048):
46
+ Dimensionality of the encoder layers and the pooler layer.
47
+ num_layers (:obj:`int`, `optional`, defaults to 32):
48
+ Number of hidden layers in the Transformer encoder.
49
+ num_attention_heads (:obj:`int`, `optional`, defaults to 32):
50
+ Number of attention heads for each attention layer in the Transformer decoder.
51
+ num_key_value_heads (:obj:`int`, `optional`):
52
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
53
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
54
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
55
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
56
+ by meanpooling all the original heads within that group. For more details checkout [this
57
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
58
+ `num_attention_heads`.
59
+ intermediate_size (:obj:`int`, `optional`, defaults to `hidden_size * 4`):
60
+ Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
61
+ activation_function (:obj:`str` or :obj:`function`, `optional`, defaults to :obj:`"silu"`):
62
+ The non-linear activation function (function or string) in the decoder.
63
+ rope_theta (:obj:`float`, `optional`, defaults to 10000.0):
64
+ The base period of the RoPE embeddings.
65
+ rope_scaling (:obj:`Dict`, `optional`):
66
+ Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
67
+ and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
68
+ accordingly.
69
+ Expected contents:
70
+ `rope_type` (:obj:`str`):
71
+ The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
72
+ 'llama3'], with 'default' being the original RoPE implementation.
73
+ `factor` (:obj:`float`, `optional`):
74
+ Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
75
+ most scaling types, a `factor` of x will enable the model to handle sequences of length x *
76
+ original maximum pre-trained length.
77
+ `original_max_position_embeddings` (:obj:`int`, `optional`):
78
+ Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
79
+ pretraining.
80
+ `attention_factor` (:obj:`float`, `optional`):
81
+ Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
82
+ computation. If unspecified, it defaults to value recommended by the implementation, using the
83
+ `factor` field to infer the suggested value.
84
+ `beta_fast` (:obj:`float`, `optional`):
85
+ Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
86
+ ramp function. If unspecified, it defaults to 32.
87
+ `beta_slow` (:obj:`float`, `optional`):
88
+ Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
89
+ ramp function. If unspecified, it defaults to 1.
90
+ `short_factor` (:obj:`List[float]`, `optional`):
91
+ Only used with 'longrope'. The scaling factor to be applied to short contexts (<
92
+ `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
93
+ size divided by the number of attention heads divided by 2
94
+ `long_factor` (:obj:`List[float]`, `optional`):
95
+ Only used with 'longrope'. The scaling factor to be applied to long contexts (<
96
+ `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
97
+ size divided by the number of attention heads divided by 2
98
+ `low_freq_factor` (:obj:`float`, `optional`):
99
+ Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
100
+ `high_freq_factor` (:obj:`float`, `optional`):
101
+ Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
102
+ embed_dropout (:obj:`float`, `optional`, defaults to 0.0):
103
+ The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.
104
+ attention_dropout (:obj:`float`, `optional`, defaults to 0.0):
105
+ The dropout ratio for the attention probabilities.
106
+ layer_norm_epsilon (:obj:`float`, `optional`, defaults to 1e-5):
107
+ The epsilon used by the layer normalization layers.
108
+ initializer_range (:obj:`float`, `optional`, defaults to 0.02):
109
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
110
+ use_cache (:obj:`bool`, `optional`, defaults to :obj:`True`):
111
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
112
+ relevant if ``config.is_decoder=True``.
113
+ bos_token_id (:obj:`int`, `optional`, defaults to 0):
114
+ Beginning of stream token id.
115
+ eos_token_id (:obj:`int`, `optional`, defaults to 2):
116
+ End of stream token id.
117
+ tie_word_embeddings (:obj:`bool`, `optional`, defaults to :obj:`True`):
118
+ Whether to tie weight embeddings
119
+ gradient_checkpointing (:obj:`bool`, `optional`, defaults to :obj:`False`):
120
+ If True, use gradient checkpointing to save memory at the expense of slower backward pass.
121
+
122
+ Example::
123
+
124
+ >>> from transformers import EXAONEModel, ExaoneConfig
125
+
126
+ >>> # Initializing a EXAONE configuration
127
+ >>> configuration = ExaoneConfig()
128
+
129
+ >>> # Initializing a model from configuration
130
+ >>> model = EXAONEModel(configuration)
131
+
132
+ >>> # Accessing the model configuration
133
+ >>> configuration = model.config
134
+ """
135
+ model_type = "exaone"
136
+ keys_to_ignore_at_inference = ["past_key_values"]
137
+ attribute_map = {"num_hidden_layers": "num_layers"}
138
+
139
+ def __init__(
140
+ self,
141
+ vocab_size=102400,
142
+ max_position_embeddings=2048,
143
+ hidden_size=2048,
144
+ num_layers=32,
145
+ num_attention_heads=32,
146
+ num_key_value_heads=None,
147
+ intermediate_size=None,
148
+ activation_function="silu",
149
+ rope_theta=10000.0,
150
+ rope_scaling=None,
151
+ embed_dropout=0.0,
152
+ attention_dropout=0.0,
153
+ layer_norm_epsilon=1e-5,
154
+ initializer_range=0.02,
155
+ use_cache=True,
156
+ bos_token_id=0,
157
+ eos_token_id=2,
158
+ tie_word_embeddings=True,
159
+ **kwargs
160
+ ):
161
+ self.vocab_size = vocab_size
162
+ self.max_position_embeddings = max_position_embeddings
163
+ self.hidden_size = hidden_size
164
+ self.num_layers = num_layers
165
+ self.num_attention_heads = num_attention_heads
166
+ self.num_hidden_layers = num_layers
167
+ if num_key_value_heads is None:
168
+ num_key_value_heads = num_attention_heads
169
+ self.num_key_value_heads = num_key_value_heads
170
+ if intermediate_size:
171
+ self.intermediate_size = intermediate_size
172
+ else:
173
+ self.intermediate_size = hidden_size * 4
174
+ self.activation_function = activation_function
175
+ self.embed_dropout = embed_dropout
176
+ self.attention_dropout = attention_dropout
177
+ self.layer_norm_epsilon = layer_norm_epsilon
178
+ self.initializer_range = initializer_range
179
+ self.use_cache = use_cache
180
+ self.rope_theta = rope_theta
181
+ self.rope_scaling = rope_scaling
182
+
183
+ self.bos_token_id = bos_token_id
184
+ self.eos_token_id = eos_token_id
185
+
186
+ super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs)
generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 361,
5
+ "pad_token_id": 0,
6
+ "transformers_version": "4.42.3"
7
+ }
model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7d7b7a87821d195396120f25a6e1a49be29b358e0b1e8ab2078f3866c9911ff9
3
+ size 4966229976
model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6cd6c04d3e58244d2b71bb7132458540be8934ddee4fbffa89d3b3d0179a622b
3
+ size 4915916080
model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6cb698bcc4f697bbebba3e1421a24eec55aab726598a7c7b50f2cdaae0926494
3
+ size 4915924392
model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b3a53e734f121d1310541a3463b46905b9ee784e94731801993fd5b3e8729764
3
+ size 838860928
model.safetensors.index.json ADDED
@@ -0,0 +1,298 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 15636897792
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00004-of-00004.safetensors",
7
+ "transformer.h.0.attn.attention.k_proj.weight": "model-00001-of-00004.safetensors",
8
+ "transformer.h.0.attn.attention.out_proj.weight": "model-00001-of-00004.safetensors",
9
+ "transformer.h.0.attn.attention.q_proj.weight": "model-00001-of-00004.safetensors",
10
+ "transformer.h.0.attn.attention.v_proj.weight": "model-00001-of-00004.safetensors",
11
+ "transformer.h.0.ln_1.weight": "model-00001-of-00004.safetensors",
12
+ "transformer.h.0.ln_2.weight": "model-00001-of-00004.safetensors",
13
+ "transformer.h.0.mlp.c_fc_0.weight": "model-00001-of-00004.safetensors",
14
+ "transformer.h.0.mlp.c_fc_1.weight": "model-00001-of-00004.safetensors",
15
+ "transformer.h.0.mlp.c_proj.weight": "model-00001-of-00004.safetensors",
16
+ "transformer.h.1.attn.attention.k_proj.weight": "model-00001-of-00004.safetensors",
17
+ "transformer.h.1.attn.attention.out_proj.weight": "model-00001-of-00004.safetensors",
18
+ "transformer.h.1.attn.attention.q_proj.weight": "model-00001-of-00004.safetensors",
19
+ "transformer.h.1.attn.attention.v_proj.weight": "model-00001-of-00004.safetensors",
20
+ "transformer.h.1.ln_1.weight": "model-00001-of-00004.safetensors",
21
+ "transformer.h.1.ln_2.weight": "model-00001-of-00004.safetensors",
22
+ "transformer.h.1.mlp.c_fc_0.weight": "model-00001-of-00004.safetensors",
23
+ "transformer.h.1.mlp.c_fc_1.weight": "model-00001-of-00004.safetensors",
24
+ "transformer.h.1.mlp.c_proj.weight": "model-00001-of-00004.safetensors",
25
+ "transformer.h.10.attn.attention.k_proj.weight": "model-00002-of-00004.safetensors",
26
+ "transformer.h.10.attn.attention.out_proj.weight": "model-00002-of-00004.safetensors",
27
+ "transformer.h.10.attn.attention.q_proj.weight": "model-00002-of-00004.safetensors",
28
+ "transformer.h.10.attn.attention.v_proj.weight": "model-00002-of-00004.safetensors",
29
+ "transformer.h.10.ln_1.weight": "model-00002-of-00004.safetensors",
30
+ "transformer.h.10.ln_2.weight": "model-00002-of-00004.safetensors",
31
+ "transformer.h.10.mlp.c_fc_0.weight": "model-00002-of-00004.safetensors",
32
+ "transformer.h.10.mlp.c_fc_1.weight": "model-00002-of-00004.safetensors",
33
+ "transformer.h.10.mlp.c_proj.weight": "model-00002-of-00004.safetensors",
34
+ "transformer.h.11.attn.attention.k_proj.weight": "model-00002-of-00004.safetensors",
35
+ "transformer.h.11.attn.attention.out_proj.weight": "model-00002-of-00004.safetensors",
36
+ "transformer.h.11.attn.attention.q_proj.weight": "model-00002-of-00004.safetensors",
37
+ "transformer.h.11.attn.attention.v_proj.weight": "model-00002-of-00004.safetensors",
38
+ "transformer.h.11.ln_1.weight": "model-00002-of-00004.safetensors",
39
+ "transformer.h.11.ln_2.weight": "model-00002-of-00004.safetensors",
40
+ "transformer.h.11.mlp.c_fc_0.weight": "model-00002-of-00004.safetensors",
41
+ "transformer.h.11.mlp.c_fc_1.weight": "model-00002-of-00004.safetensors",
42
+ "transformer.h.11.mlp.c_proj.weight": "model-00002-of-00004.safetensors",
43
+ "transformer.h.12.attn.attention.k_proj.weight": "model-00002-of-00004.safetensors",
44
+ "transformer.h.12.attn.attention.out_proj.weight": "model-00002-of-00004.safetensors",
45
+ "transformer.h.12.attn.attention.q_proj.weight": "model-00002-of-00004.safetensors",
46
+ "transformer.h.12.attn.attention.v_proj.weight": "model-00002-of-00004.safetensors",
47
+ "transformer.h.12.ln_1.weight": "model-00002-of-00004.safetensors",
48
+ "transformer.h.12.ln_2.weight": "model-00002-of-00004.safetensors",
49
+ "transformer.h.12.mlp.c_fc_0.weight": "model-00002-of-00004.safetensors",
50
+ "transformer.h.12.mlp.c_fc_1.weight": "model-00002-of-00004.safetensors",
51
+ "transformer.h.12.mlp.c_proj.weight": "model-00002-of-00004.safetensors",
52
+ "transformer.h.13.attn.attention.k_proj.weight": "model-00002-of-00004.safetensors",
53
+ "transformer.h.13.attn.attention.out_proj.weight": "model-00002-of-00004.safetensors",
54
+ "transformer.h.13.attn.attention.q_proj.weight": "model-00002-of-00004.safetensors",
55
+ "transformer.h.13.attn.attention.v_proj.weight": "model-00002-of-00004.safetensors",
56
+ "transformer.h.13.ln_1.weight": "model-00002-of-00004.safetensors",
57
+ "transformer.h.13.ln_2.weight": "model-00002-of-00004.safetensors",
58
+ "transformer.h.13.mlp.c_fc_0.weight": "model-00002-of-00004.safetensors",
59
+ "transformer.h.13.mlp.c_fc_1.weight": "model-00002-of-00004.safetensors",
60
+ "transformer.h.13.mlp.c_proj.weight": "model-00002-of-00004.safetensors",
61
+ "transformer.h.14.attn.attention.k_proj.weight": "model-00002-of-00004.safetensors",
62
+ "transformer.h.14.attn.attention.out_proj.weight": "model-00002-of-00004.safetensors",
63
+ "transformer.h.14.attn.attention.q_proj.weight": "model-00002-of-00004.safetensors",
64
+ "transformer.h.14.attn.attention.v_proj.weight": "model-00002-of-00004.safetensors",
65
+ "transformer.h.14.ln_1.weight": "model-00002-of-00004.safetensors",
66
+ "transformer.h.14.ln_2.weight": "model-00002-of-00004.safetensors",
67
+ "transformer.h.14.mlp.c_fc_0.weight": "model-00002-of-00004.safetensors",
68
+ "transformer.h.14.mlp.c_fc_1.weight": "model-00002-of-00004.safetensors",
69
+ "transformer.h.14.mlp.c_proj.weight": "model-00002-of-00004.safetensors",
70
+ "transformer.h.15.attn.attention.k_proj.weight": "model-00002-of-00004.safetensors",
71
+ "transformer.h.15.attn.attention.out_proj.weight": "model-00002-of-00004.safetensors",
72
+ "transformer.h.15.attn.attention.q_proj.weight": "model-00002-of-00004.safetensors",
73
+ "transformer.h.15.attn.attention.v_proj.weight": "model-00002-of-00004.safetensors",
74
+ "transformer.h.15.ln_1.weight": "model-00002-of-00004.safetensors",
75
+ "transformer.h.15.ln_2.weight": "model-00002-of-00004.safetensors",
76
+ "transformer.h.15.mlp.c_fc_0.weight": "model-00002-of-00004.safetensors",
77
+ "transformer.h.15.mlp.c_fc_1.weight": "model-00002-of-00004.safetensors",
78
+ "transformer.h.15.mlp.c_proj.weight": "model-00002-of-00004.safetensors",
79
+ "transformer.h.16.attn.attention.k_proj.weight": "model-00002-of-00004.safetensors",
80
+ "transformer.h.16.attn.attention.out_proj.weight": "model-00002-of-00004.safetensors",
81
+ "transformer.h.16.attn.attention.q_proj.weight": "model-00002-of-00004.safetensors",
82
+ "transformer.h.16.attn.attention.v_proj.weight": "model-00002-of-00004.safetensors",
83
+ "transformer.h.16.ln_1.weight": "model-00002-of-00004.safetensors",
84
+ "transformer.h.16.ln_2.weight": "model-00002-of-00004.safetensors",
85
+ "transformer.h.16.mlp.c_fc_0.weight": "model-00002-of-00004.safetensors",
86
+ "transformer.h.16.mlp.c_fc_1.weight": "model-00002-of-00004.safetensors",
87
+ "transformer.h.16.mlp.c_proj.weight": "model-00002-of-00004.safetensors",
88
+ "transformer.h.17.attn.attention.k_proj.weight": "model-00002-of-00004.safetensors",
89
+ "transformer.h.17.attn.attention.out_proj.weight": "model-00002-of-00004.safetensors",
90
+ "transformer.h.17.attn.attention.q_proj.weight": "model-00002-of-00004.safetensors",
91
+ "transformer.h.17.attn.attention.v_proj.weight": "model-00002-of-00004.safetensors",
92
+ "transformer.h.17.ln_1.weight": "model-00002-of-00004.safetensors",
93
+ "transformer.h.17.ln_2.weight": "model-00002-of-00004.safetensors",
94
+ "transformer.h.17.mlp.c_fc_0.weight": "model-00002-of-00004.safetensors",
95
+ "transformer.h.17.mlp.c_fc_1.weight": "model-00002-of-00004.safetensors",
96
+ "transformer.h.17.mlp.c_proj.weight": "model-00002-of-00004.safetensors",
97
+ "transformer.h.18.attn.attention.k_proj.weight": "model-00002-of-00004.safetensors",
98
+ "transformer.h.18.attn.attention.out_proj.weight": "model-00002-of-00004.safetensors",
99
+ "transformer.h.18.attn.attention.q_proj.weight": "model-00002-of-00004.safetensors",
100
+ "transformer.h.18.attn.attention.v_proj.weight": "model-00002-of-00004.safetensors",
101
+ "transformer.h.18.ln_1.weight": "model-00002-of-00004.safetensors",
102
+ "transformer.h.18.ln_2.weight": "model-00002-of-00004.safetensors",
103
+ "transformer.h.18.mlp.c_fc_0.weight": "model-00002-of-00004.safetensors",
104
+ "transformer.h.18.mlp.c_fc_1.weight": "model-00002-of-00004.safetensors",
105
+ "transformer.h.18.mlp.c_proj.weight": "model-00002-of-00004.safetensors",
106
+ "transformer.h.19.attn.attention.k_proj.weight": "model-00002-of-00004.safetensors",
107
+ "transformer.h.19.attn.attention.out_proj.weight": "model-00002-of-00004.safetensors",
108
+ "transformer.h.19.attn.attention.q_proj.weight": "model-00002-of-00004.safetensors",
109
+ "transformer.h.19.attn.attention.v_proj.weight": "model-00002-of-00004.safetensors",
110
+ "transformer.h.19.ln_1.weight": "model-00002-of-00004.safetensors",
111
+ "transformer.h.19.ln_2.weight": "model-00002-of-00004.safetensors",
112
+ "transformer.h.19.mlp.c_fc_0.weight": "model-00002-of-00004.safetensors",
113
+ "transformer.h.19.mlp.c_fc_1.weight": "model-00002-of-00004.safetensors",
114
+ "transformer.h.19.mlp.c_proj.weight": "model-00002-of-00004.safetensors",
115
+ "transformer.h.2.attn.attention.k_proj.weight": "model-00001-of-00004.safetensors",
116
+ "transformer.h.2.attn.attention.out_proj.weight": "model-00001-of-00004.safetensors",
117
+ "transformer.h.2.attn.attention.q_proj.weight": "model-00001-of-00004.safetensors",
118
+ "transformer.h.2.attn.attention.v_proj.weight": "model-00001-of-00004.safetensors",
119
+ "transformer.h.2.ln_1.weight": "model-00001-of-00004.safetensors",
120
+ "transformer.h.2.ln_2.weight": "model-00001-of-00004.safetensors",
121
+ "transformer.h.2.mlp.c_fc_0.weight": "model-00001-of-00004.safetensors",
122
+ "transformer.h.2.mlp.c_fc_1.weight": "model-00001-of-00004.safetensors",
123
+ "transformer.h.2.mlp.c_proj.weight": "model-00001-of-00004.safetensors",
124
+ "transformer.h.20.attn.attention.k_proj.weight": "model-00002-of-00004.safetensors",
125
+ "transformer.h.20.attn.attention.out_proj.weight": "model-00002-of-00004.safetensors",
126
+ "transformer.h.20.attn.attention.q_proj.weight": "model-00002-of-00004.safetensors",
127
+ "transformer.h.20.attn.attention.v_proj.weight": "model-00002-of-00004.safetensors",
128
+ "transformer.h.20.ln_1.weight": "model-00002-of-00004.safetensors",
129
+ "transformer.h.20.ln_2.weight": "model-00002-of-00004.safetensors",
130
+ "transformer.h.20.mlp.c_fc_0.weight": "model-00002-of-00004.safetensors",
131
+ "transformer.h.20.mlp.c_fc_1.weight": "model-00002-of-00004.safetensors",
132
+ "transformer.h.20.mlp.c_proj.weight": "model-00003-of-00004.safetensors",
133
+ "transformer.h.21.attn.attention.k_proj.weight": "model-00003-of-00004.safetensors",
134
+ "transformer.h.21.attn.attention.out_proj.weight": "model-00003-of-00004.safetensors",
135
+ "transformer.h.21.attn.attention.q_proj.weight": "model-00003-of-00004.safetensors",
136
+ "transformer.h.21.attn.attention.v_proj.weight": "model-00003-of-00004.safetensors",
137
+ "transformer.h.21.ln_1.weight": "model-00003-of-00004.safetensors",
138
+ "transformer.h.21.ln_2.weight": "model-00003-of-00004.safetensors",
139
+ "transformer.h.21.mlp.c_fc_0.weight": "model-00003-of-00004.safetensors",
140
+ "transformer.h.21.mlp.c_fc_1.weight": "model-00003-of-00004.safetensors",
141
+ "transformer.h.21.mlp.c_proj.weight": "model-00003-of-00004.safetensors",
142
+ "transformer.h.22.attn.attention.k_proj.weight": "model-00003-of-00004.safetensors",
143
+ "transformer.h.22.attn.attention.out_proj.weight": "model-00003-of-00004.safetensors",
144
+ "transformer.h.22.attn.attention.q_proj.weight": "model-00003-of-00004.safetensors",
145
+ "transformer.h.22.attn.attention.v_proj.weight": "model-00003-of-00004.safetensors",
146
+ "transformer.h.22.ln_1.weight": "model-00003-of-00004.safetensors",
147
+ "transformer.h.22.ln_2.weight": "model-00003-of-00004.safetensors",
148
+ "transformer.h.22.mlp.c_fc_0.weight": "model-00003-of-00004.safetensors",
149
+ "transformer.h.22.mlp.c_fc_1.weight": "model-00003-of-00004.safetensors",
150
+ "transformer.h.22.mlp.c_proj.weight": "model-00003-of-00004.safetensors",
151
+ "transformer.h.23.attn.attention.k_proj.weight": "model-00003-of-00004.safetensors",
152
+ "transformer.h.23.attn.attention.out_proj.weight": "model-00003-of-00004.safetensors",
153
+ "transformer.h.23.attn.attention.q_proj.weight": "model-00003-of-00004.safetensors",
154
+ "transformer.h.23.attn.attention.v_proj.weight": "model-00003-of-00004.safetensors",
155
+ "transformer.h.23.ln_1.weight": "model-00003-of-00004.safetensors",
156
+ "transformer.h.23.ln_2.weight": "model-00003-of-00004.safetensors",
157
+ "transformer.h.23.mlp.c_fc_0.weight": "model-00003-of-00004.safetensors",
158
+ "transformer.h.23.mlp.c_fc_1.weight": "model-00003-of-00004.safetensors",
159
+ "transformer.h.23.mlp.c_proj.weight": "model-00003-of-00004.safetensors",
160
+ "transformer.h.24.attn.attention.k_proj.weight": "model-00003-of-00004.safetensors",
161
+ "transformer.h.24.attn.attention.out_proj.weight": "model-00003-of-00004.safetensors",
162
+ "transformer.h.24.attn.attention.q_proj.weight": "model-00003-of-00004.safetensors",
163
+ "transformer.h.24.attn.attention.v_proj.weight": "model-00003-of-00004.safetensors",
164
+ "transformer.h.24.ln_1.weight": "model-00003-of-00004.safetensors",
165
+ "transformer.h.24.ln_2.weight": "model-00003-of-00004.safetensors",
166
+ "transformer.h.24.mlp.c_fc_0.weight": "model-00003-of-00004.safetensors",
167
+ "transformer.h.24.mlp.c_fc_1.weight": "model-00003-of-00004.safetensors",
168
+ "transformer.h.24.mlp.c_proj.weight": "model-00003-of-00004.safetensors",
169
+ "transformer.h.25.attn.attention.k_proj.weight": "model-00003-of-00004.safetensors",
170
+ "transformer.h.25.attn.attention.out_proj.weight": "model-00003-of-00004.safetensors",
171
+ "transformer.h.25.attn.attention.q_proj.weight": "model-00003-of-00004.safetensors",
172
+ "transformer.h.25.attn.attention.v_proj.weight": "model-00003-of-00004.safetensors",
173
+ "transformer.h.25.ln_1.weight": "model-00003-of-00004.safetensors",
174
+ "transformer.h.25.ln_2.weight": "model-00003-of-00004.safetensors",
175
+ "transformer.h.25.mlp.c_fc_0.weight": "model-00003-of-00004.safetensors",
176
+ "transformer.h.25.mlp.c_fc_1.weight": "model-00003-of-00004.safetensors",
177
+ "transformer.h.25.mlp.c_proj.weight": "model-00003-of-00004.safetensors",
178
+ "transformer.h.26.attn.attention.k_proj.weight": "model-00003-of-00004.safetensors",
179
+ "transformer.h.26.attn.attention.out_proj.weight": "model-00003-of-00004.safetensors",
180
+ "transformer.h.26.attn.attention.q_proj.weight": "model-00003-of-00004.safetensors",
181
+ "transformer.h.26.attn.attention.v_proj.weight": "model-00003-of-00004.safetensors",
182
+ "transformer.h.26.ln_1.weight": "model-00003-of-00004.safetensors",
183
+ "transformer.h.26.ln_2.weight": "model-00003-of-00004.safetensors",
184
+ "transformer.h.26.mlp.c_fc_0.weight": "model-00003-of-00004.safetensors",
185
+ "transformer.h.26.mlp.c_fc_1.weight": "model-00003-of-00004.safetensors",
186
+ "transformer.h.26.mlp.c_proj.weight": "model-00003-of-00004.safetensors",
187
+ "transformer.h.27.attn.attention.k_proj.weight": "model-00003-of-00004.safetensors",
188
+ "transformer.h.27.attn.attention.out_proj.weight": "model-00003-of-00004.safetensors",
189
+ "transformer.h.27.attn.attention.q_proj.weight": "model-00003-of-00004.safetensors",
190
+ "transformer.h.27.attn.attention.v_proj.weight": "model-00003-of-00004.safetensors",
191
+ "transformer.h.27.ln_1.weight": "model-00003-of-00004.safetensors",
192
+ "transformer.h.27.ln_2.weight": "model-00003-of-00004.safetensors",
193
+ "transformer.h.27.mlp.c_fc_0.weight": "model-00003-of-00004.safetensors",
194
+ "transformer.h.27.mlp.c_fc_1.weight": "model-00003-of-00004.safetensors",
195
+ "transformer.h.27.mlp.c_proj.weight": "model-00003-of-00004.safetensors",
196
+ "transformer.h.28.attn.attention.k_proj.weight": "model-00003-of-00004.safetensors",
197
+ "transformer.h.28.attn.attention.out_proj.weight": "model-00003-of-00004.safetensors",
198
+ "transformer.h.28.attn.attention.q_proj.weight": "model-00003-of-00004.safetensors",
199
+ "transformer.h.28.attn.attention.v_proj.weight": "model-00003-of-00004.safetensors",
200
+ "transformer.h.28.ln_1.weight": "model-00003-of-00004.safetensors",
201
+ "transformer.h.28.ln_2.weight": "model-00003-of-00004.safetensors",
202
+ "transformer.h.28.mlp.c_fc_0.weight": "model-00003-of-00004.safetensors",
203
+ "transformer.h.28.mlp.c_fc_1.weight": "model-00003-of-00004.safetensors",
204
+ "transformer.h.28.mlp.c_proj.weight": "model-00003-of-00004.safetensors",
205
+ "transformer.h.29.attn.attention.k_proj.weight": "model-00003-of-00004.safetensors",
206
+ "transformer.h.29.attn.attention.out_proj.weight": "model-00003-of-00004.safetensors",
207
+ "transformer.h.29.attn.attention.q_proj.weight": "model-00003-of-00004.safetensors",
208
+ "transformer.h.29.attn.attention.v_proj.weight": "model-00003-of-00004.safetensors",
209
+ "transformer.h.29.ln_1.weight": "model-00003-of-00004.safetensors",
210
+ "transformer.h.29.ln_2.weight": "model-00003-of-00004.safetensors",
211
+ "transformer.h.29.mlp.c_fc_0.weight": "model-00003-of-00004.safetensors",
212
+ "transformer.h.29.mlp.c_fc_1.weight": "model-00003-of-00004.safetensors",
213
+ "transformer.h.29.mlp.c_proj.weight": "model-00003-of-00004.safetensors",
214
+ "transformer.h.3.attn.attention.k_proj.weight": "model-00001-of-00004.safetensors",
215
+ "transformer.h.3.attn.attention.out_proj.weight": "model-00001-of-00004.safetensors",
216
+ "transformer.h.3.attn.attention.q_proj.weight": "model-00001-of-00004.safetensors",
217
+ "transformer.h.3.attn.attention.v_proj.weight": "model-00001-of-00004.safetensors",
218
+ "transformer.h.3.ln_1.weight": "model-00001-of-00004.safetensors",
219
+ "transformer.h.3.ln_2.weight": "model-00001-of-00004.safetensors",
220
+ "transformer.h.3.mlp.c_fc_0.weight": "model-00001-of-00004.safetensors",
221
+ "transformer.h.3.mlp.c_fc_1.weight": "model-00001-of-00004.safetensors",
222
+ "transformer.h.3.mlp.c_proj.weight": "model-00001-of-00004.safetensors",
223
+ "transformer.h.30.attn.attention.k_proj.weight": "model-00003-of-00004.safetensors",
224
+ "transformer.h.30.attn.attention.out_proj.weight": "model-00003-of-00004.safetensors",
225
+ "transformer.h.30.attn.attention.q_proj.weight": "model-00003-of-00004.safetensors",
226
+ "transformer.h.30.attn.attention.v_proj.weight": "model-00003-of-00004.safetensors",
227
+ "transformer.h.30.ln_1.weight": "model-00003-of-00004.safetensors",
228
+ "transformer.h.30.ln_2.weight": "model-00003-of-00004.safetensors",
229
+ "transformer.h.30.mlp.c_fc_0.weight": "model-00003-of-00004.safetensors",
230
+ "transformer.h.30.mlp.c_fc_1.weight": "model-00003-of-00004.safetensors",
231
+ "transformer.h.30.mlp.c_proj.weight": "model-00003-of-00004.safetensors",
232
+ "transformer.h.31.attn.attention.k_proj.weight": "model-00003-of-00004.safetensors",
233
+ "transformer.h.31.attn.attention.out_proj.weight": "model-00003-of-00004.safetensors",
234
+ "transformer.h.31.attn.attention.q_proj.weight": "model-00003-of-00004.safetensors",
235
+ "transformer.h.31.attn.attention.v_proj.weight": "model-00003-of-00004.safetensors",
236
+ "transformer.h.31.ln_1.weight": "model-00003-of-00004.safetensors",
237
+ "transformer.h.31.ln_2.weight": "model-00003-of-00004.safetensors",
238
+ "transformer.h.31.mlp.c_fc_0.weight": "model-00003-of-00004.safetensors",
239
+ "transformer.h.31.mlp.c_fc_1.weight": "model-00003-of-00004.safetensors",
240
+ "transformer.h.31.mlp.c_proj.weight": "model-00003-of-00004.safetensors",
241
+ "transformer.h.4.attn.attention.k_proj.weight": "model-00001-of-00004.safetensors",
242
+ "transformer.h.4.attn.attention.out_proj.weight": "model-00001-of-00004.safetensors",
243
+ "transformer.h.4.attn.attention.q_proj.weight": "model-00001-of-00004.safetensors",
244
+ "transformer.h.4.attn.attention.v_proj.weight": "model-00001-of-00004.safetensors",
245
+ "transformer.h.4.ln_1.weight": "model-00001-of-00004.safetensors",
246
+ "transformer.h.4.ln_2.weight": "model-00001-of-00004.safetensors",
247
+ "transformer.h.4.mlp.c_fc_0.weight": "model-00001-of-00004.safetensors",
248
+ "transformer.h.4.mlp.c_fc_1.weight": "model-00001-of-00004.safetensors",
249
+ "transformer.h.4.mlp.c_proj.weight": "model-00001-of-00004.safetensors",
250
+ "transformer.h.5.attn.attention.k_proj.weight": "model-00001-of-00004.safetensors",
251
+ "transformer.h.5.attn.attention.out_proj.weight": "model-00001-of-00004.safetensors",
252
+ "transformer.h.5.attn.attention.q_proj.weight": "model-00001-of-00004.safetensors",
253
+ "transformer.h.5.attn.attention.v_proj.weight": "model-00001-of-00004.safetensors",
254
+ "transformer.h.5.ln_1.weight": "model-00001-of-00004.safetensors",
255
+ "transformer.h.5.ln_2.weight": "model-00001-of-00004.safetensors",
256
+ "transformer.h.5.mlp.c_fc_0.weight": "model-00001-of-00004.safetensors",
257
+ "transformer.h.5.mlp.c_fc_1.weight": "model-00001-of-00004.safetensors",
258
+ "transformer.h.5.mlp.c_proj.weight": "model-00001-of-00004.safetensors",
259
+ "transformer.h.6.attn.attention.k_proj.weight": "model-00001-of-00004.safetensors",
260
+ "transformer.h.6.attn.attention.out_proj.weight": "model-00001-of-00004.safetensors",
261
+ "transformer.h.6.attn.attention.q_proj.weight": "model-00001-of-00004.safetensors",
262
+ "transformer.h.6.attn.attention.v_proj.weight": "model-00001-of-00004.safetensors",
263
+ "transformer.h.6.ln_1.weight": "model-00001-of-00004.safetensors",
264
+ "transformer.h.6.ln_2.weight": "model-00001-of-00004.safetensors",
265
+ "transformer.h.6.mlp.c_fc_0.weight": "model-00001-of-00004.safetensors",
266
+ "transformer.h.6.mlp.c_fc_1.weight": "model-00001-of-00004.safetensors",
267
+ "transformer.h.6.mlp.c_proj.weight": "model-00001-of-00004.safetensors",
268
+ "transformer.h.7.attn.attention.k_proj.weight": "model-00001-of-00004.safetensors",
269
+ "transformer.h.7.attn.attention.out_proj.weight": "model-00001-of-00004.safetensors",
270
+ "transformer.h.7.attn.attention.q_proj.weight": "model-00001-of-00004.safetensors",
271
+ "transformer.h.7.attn.attention.v_proj.weight": "model-00001-of-00004.safetensors",
272
+ "transformer.h.7.ln_1.weight": "model-00001-of-00004.safetensors",
273
+ "transformer.h.7.ln_2.weight": "model-00001-of-00004.safetensors",
274
+ "transformer.h.7.mlp.c_fc_0.weight": "model-00001-of-00004.safetensors",
275
+ "transformer.h.7.mlp.c_fc_1.weight": "model-00001-of-00004.safetensors",
276
+ "transformer.h.7.mlp.c_proj.weight": "model-00001-of-00004.safetensors",
277
+ "transformer.h.8.attn.attention.k_proj.weight": "model-00001-of-00004.safetensors",
278
+ "transformer.h.8.attn.attention.out_proj.weight": "model-00001-of-00004.safetensors",
279
+ "transformer.h.8.attn.attention.q_proj.weight": "model-00001-of-00004.safetensors",
280
+ "transformer.h.8.attn.attention.v_proj.weight": "model-00001-of-00004.safetensors",
281
+ "transformer.h.8.ln_1.weight": "model-00001-of-00004.safetensors",
282
+ "transformer.h.8.ln_2.weight": "model-00001-of-00004.safetensors",
283
+ "transformer.h.8.mlp.c_fc_0.weight": "model-00001-of-00004.safetensors",
284
+ "transformer.h.8.mlp.c_fc_1.weight": "model-00001-of-00004.safetensors",
285
+ "transformer.h.8.mlp.c_proj.weight": "model-00001-of-00004.safetensors",
286
+ "transformer.h.9.attn.attention.k_proj.weight": "model-00001-of-00004.safetensors",
287
+ "transformer.h.9.attn.attention.out_proj.weight": "model-00001-of-00004.safetensors",
288
+ "transformer.h.9.attn.attention.q_proj.weight": "model-00001-of-00004.safetensors",
289
+ "transformer.h.9.attn.attention.v_proj.weight": "model-00001-of-00004.safetensors",
290
+ "transformer.h.9.ln_1.weight": "model-00001-of-00004.safetensors",
291
+ "transformer.h.9.ln_2.weight": "model-00001-of-00004.safetensors",
292
+ "transformer.h.9.mlp.c_fc_0.weight": "model-00001-of-00004.safetensors",
293
+ "transformer.h.9.mlp.c_fc_1.weight": "model-00002-of-00004.safetensors",
294
+ "transformer.h.9.mlp.c_proj.weight": "model-00002-of-00004.safetensors",
295
+ "transformer.ln_f.weight": "model-00003-of-00004.safetensors",
296
+ "transformer.wte.weight": "model-00001-of-00004.safetensors"
297
+ }
298
+ }
modeling_exaone.py ADDED
@@ -0,0 +1,1747 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2021 The LG AI Research EXAONE Lab
3
+ # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
4
+ #
5
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
6
+ # and OPT implementations in this library. It has been modified from its
7
+ # original forms to accommodate minor architectural differences compared
8
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
9
+ #
10
+ # Licensed under the Apache License, Version 2.0 (the "License");
11
+ # you may not use this file except in compliance with the License.
12
+ # You may obtain a copy of the License at
13
+ #
14
+ # http://www.apache.org/licenses/LICENSE-2.0
15
+ #
16
+ # Unless required by applicable law or agreed to in writing, software
17
+ # distributed under the License is distributed on an "AS IS" BASIS,
18
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
19
+ # See the License for the specific language governing permissions and
20
+ # limitations under the License.
21
+ """ LG AI Research EXAONE Lab"""
22
+ import sys
23
+ import os
24
+ from typing import List, Optional, Tuple, Union
25
+ from packaging import version
26
+
27
+ import torch
28
+ import torch.utils.checkpoint
29
+ from torch import nn
30
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
31
+ import torch.nn.functional as F
32
+
33
+ from transformers.activations import ACT2FN
34
+ from transformers.cache_utils import Cache, DynamicCache, StaticCache
35
+ from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
36
+ from transformers.configuration_utils import PretrainedConfig
37
+ from transformers.modeling_attn_mask_utils import AttentionMaskConverter
38
+
39
+ from transformers.modeling_outputs import (
40
+ BaseModelOutputWithPast,
41
+ BaseModelOutputWithPastAndCrossAttentions,
42
+ CausalLMOutputWithCrossAttentions,
43
+ CausalLMOutputWithPast,
44
+ SequenceClassifierOutputWithPast,
45
+ QuestionAnsweringModelOutput,
46
+ )
47
+ from transformers.modeling_utils import PreTrainedModel
48
+ from transformers.utils import (
49
+ add_code_sample_docstrings,
50
+ add_start_docstrings,
51
+ add_start_docstrings_to_model_forward,
52
+ is_flash_attn_2_available,
53
+ logging,
54
+ )
55
+ from .configuration_exaone import ExaoneConfig
56
+ from torch.nn.utils import skip_init
57
+ import math
58
+ import numpy as np
59
+ from typing import List, Optional, Tuple, Union
60
+
61
+
62
+ if is_flash_attn_2_available():
63
+ try:
64
+ import inspect
65
+ from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input
66
+ from flash_attn import flash_attn_func, flash_attn_varlen_func
67
+
68
+ _flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters)
69
+
70
+ import flash_attn
71
+ if version.parse(flash_attn.__version__) > version.parse('2.4.2'):
72
+ from flash_attn.ops.triton.layer_norm import rms_norm_fn
73
+ else:
74
+ from flash_attn.ops.triton.layernorm import rms_norm_fn
75
+ except:
76
+ pass
77
+
78
+
79
+ logger = logging.get_logger(__name__)
80
+
81
+ _CHECKPOINT_FOR_DOC = "exaone"
82
+ _CONFIG_FOR_DOC = "ExaoneConfig"
83
+
84
+ EXAONE_PRETRAINED_MODEL_ARCHIVE_LIST = [
85
+ "exaone",
86
+ ]
87
+
88
+
89
+ @torch.jit.script
90
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
91
+ """
92
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
93
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
94
+ """
95
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
96
+ if n_rep == 1:
97
+ return hidden_states
98
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
99
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
100
+
101
+
102
+ def apply_rotary_pos_emb(q, k, cos, sin, unsqueeze_dim=1):
103
+ """Applies Rotary Position Embedding to the query and key tensors.
104
+
105
+ Args:
106
+ q (`torch.Tensor`): The query tensor.
107
+ k (`torch.Tensor`): The key tensor.
108
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
109
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
110
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
111
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
112
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
113
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
114
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
115
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
116
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
117
+ Returns:
118
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
119
+ """
120
+ cos = cos.unsqueeze(unsqueeze_dim)
121
+ sin = sin.unsqueeze(unsqueeze_dim)
122
+ q_embed = (q * cos) + (rotate_half(q) * sin)
123
+ k_embed = (k * cos) + (rotate_half(k) * sin)
124
+ return q_embed, k_embed
125
+
126
+
127
+ def rotate_half(x):
128
+ """ Rotates half the hidden dims of the input. """
129
+ x1 = x[..., : x.shape[-1] // 2]
130
+ x2 = x[..., x.shape[-1] // 2 :]
131
+ return torch.cat((-x2, x1), dim=-1)
132
+
133
+
134
+ # copied from llama
135
+ def _prepare_4d_causal_attention_mask_with_cache_position(
136
+ attention_mask: torch.Tensor,
137
+ sequence_length: int,
138
+ target_length: int,
139
+ dtype: torch.dtype,
140
+ device: torch.device,
141
+ min_dtype: float,
142
+ cache_position: torch.Tensor,
143
+ batch_size: int,
144
+ ):
145
+ """
146
+ Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
147
+ `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
148
+
149
+ Args:
150
+ attention_mask (`torch.Tensor`):
151
+ A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`.
152
+ sequence_length (`int`):
153
+ The sequence length being processed.
154
+ target_length (`int`):
155
+ The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet.
156
+ dtype (`torch.dtype`):
157
+ The dtype to use for the 4D attention mask.
158
+ device (`torch.device`):
159
+ The device to plcae the 4D attention mask on.
160
+ min_dtype (`float`):
161
+ The minimum value representable with the dtype `dtype`.
162
+ cache_position (`torch.Tensor`):
163
+ Indices depicting the position of the input sequence tokens in the sequence.
164
+ batch_size (`torch.Tensor`):
165
+ Batch size.
166
+ """
167
+ if attention_mask is not None and attention_mask.dim() == 4:
168
+ # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
169
+ causal_mask = attention_mask
170
+ else:
171
+ causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device)
172
+ if sequence_length != 1:
173
+ causal_mask = torch.triu(causal_mask, diagonal=1)
174
+ causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
175
+ causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
176
+ if attention_mask is not None:
177
+ causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
178
+ mask_length = attention_mask.shape[-1]
179
+ padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
180
+ padding_mask = padding_mask == 0
181
+ causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
182
+ padding_mask, min_dtype
183
+ )
184
+
185
+ return causal_mask
186
+
187
+
188
+ class ExaoneRMSNorm(torch.nn.Module):
189
+ def __init__(self, hidden_size, eps=1e-6):
190
+ super().__init__()
191
+ self.eps = eps
192
+ self.weight = torch.nn.Parameter(torch.ones(hidden_size))
193
+
194
+ def forward(self, hidden_states):
195
+ input_dtype = hidden_states.dtype
196
+ hidden_states = hidden_states.to(torch.float32)
197
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
198
+ hidden_states = hidden_states * torch.rsqrt(variance + self.eps)
199
+ return self.weight * hidden_states.to(input_dtype)
200
+
201
+
202
+ class ExaoneTritonRMSNorm(torch.nn.Module):
203
+ def __init__(
204
+ self,
205
+ hidden_size: int = 0,
206
+ eps: float = 1e-5,
207
+ ):
208
+ super().__init__()
209
+ self.eps = eps
210
+ self.drop = None
211
+ self.weight = torch.nn.Parameter(torch.empty(hidden_size))
212
+ self.register_parameter("bias", None)
213
+ self.reset_parameters()
214
+
215
+ def reset_parameters(self):
216
+ torch.nn.init.ones_(self.weight)
217
+
218
+ def forward(self, x, residual=None, prenorm=False, residual_in_fp32=False):
219
+ return rms_norm_fn(
220
+ x,
221
+ self.weight,
222
+ self.bias,
223
+ residual=residual,
224
+ eps=self.eps,
225
+ dropout_p=self.drop.p if self.drop is not None and self.training else 0.0,
226
+ prenorm=prenorm,
227
+ residual_in_fp32=residual_in_fp32,
228
+ )
229
+
230
+
231
+ ALL_LAYERNORM_LAYERS.append(ExaoneRMSNorm)
232
+ ALL_LAYERNORM_LAYERS.append(ExaoneTritonRMSNorm)
233
+
234
+
235
+ class ExaoneRotaryEmbedding(nn.Module):
236
+ """
237
+ Common description for the functions named `_compute_XXX_rope_parameters()`
238
+ - Copied from `transformers.modeling_rope_utils` in v4.43, with some modifications.
239
+
240
+ Computes the inverse frequencies with linear scaling.
241
+ The EXAONE model supports 'default', 'linear', 'dynamic', and 'yarn'.
242
+
243
+ Args:
244
+ config (:obj:`~transformers.PretrainedConfig`):
245
+ The model configuration.
246
+ device (:obj:`torch.device`):
247
+ The device to use for initialization of the inverse frequencies.
248
+ seq_len (:obj:`int`, `optional`):
249
+ The current sequence length. Unused for this type of RoPE.
250
+ Returns:
251
+ Tuple of (:obj:`torch.Tensor`, :obj:`float`), containing the inverse frequencies for the RoPE embeddings and the
252
+ post-processing scaling factor applied to the computed cos/sin (unused in some types of RoPE).
253
+ """
254
+
255
+ def _compute_default_rope_parameters(
256
+ self,
257
+ config: Optional[PretrainedConfig],
258
+ device: Optional["torch.device"] = None,
259
+ seq_len: Optional[int] = None,
260
+ ) -> Tuple["torch.Tensor", float]:
261
+ base = config.rope_theta
262
+ partial_rotary_factor = config.partial_rotary_factor if hasattr(config, "partial_rotary_factor") else 1.0
263
+ dim = int((config.hidden_size // config.num_attention_heads) * partial_rotary_factor)
264
+
265
+ attention_factor = 1.0 # Unused in this type of RoPE
266
+
267
+ inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.int64).float().to(device) / dim))
268
+ return inv_freq, attention_factor
269
+
270
+ def _compute_linear_scaling_rope_parameters(
271
+ self,
272
+ config: Optional[PretrainedConfig],
273
+ device: Optional["torch.device"] = None,
274
+ seq_len: Optional[int] = None,
275
+ ) -> Tuple["torch.Tensor", float]:
276
+ factor = config.rope_scaling["factor"]
277
+ if factor < 1.0:
278
+ logger.warning_once(f"`rope_scaling`'s factor field must be a float >= 1, got {factor}")
279
+
280
+ inv_freq, attention_factor = self._compute_default_rope_parameters(config, device, seq_len)
281
+ inv_freq /= factor
282
+ return inv_freq, attention_factor
283
+
284
+ def _compute_dynamic_ntk_parameters(
285
+ self,
286
+ config: Optional[PretrainedConfig],
287
+ device: Optional["torch.device"] = None,
288
+ seq_len: Optional[int] = None,
289
+ ) -> Tuple["torch.Tensor", float]:
290
+ base = config.rope_theta
291
+ partial_rotary_factor = config.partial_rotary_factor if hasattr(config, "partial_rotary_factor") else 1.0
292
+ dim = int((config.hidden_size // config.num_attention_heads) * partial_rotary_factor)
293
+ max_position_embeddings = config.max_position_embeddings
294
+ factor = config.rope_scaling["factor"]
295
+ if factor < 1.0:
296
+ logger.warning_once(f"`rope_scaling`'s factor field must be a float >= 1, got {factor}")
297
+
298
+ attention_factor = 1.0 # Unused in this type of RoPE
299
+ seq_len = seq_len if seq_len is not None else max_position_embeddings
300
+
301
+ base = base * ((factor * seq_len / max_position_embeddings) - (factor - 1)) ** (dim / (dim - 2))
302
+ inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.int64).float().to(device) / dim))
303
+ return inv_freq, attention_factor
304
+
305
+ def _compute_yarn_parameters(
306
+ self,
307
+ config: PretrainedConfig,
308
+ device: "torch.device",
309
+ seq_len: Optional[int] = None,
310
+ ) -> Tuple["torch.Tensor", float]:
311
+ base = config.rope_theta
312
+ partial_rotary_factor = config.partial_rotary_factor if hasattr(config, "partial_rotary_factor") else 1.0
313
+ dim = int((config.hidden_size // config.num_attention_heads) * partial_rotary_factor)
314
+ max_position_embeddings = config.max_position_embeddings
315
+ factor = config.rope_scaling["factor"]
316
+ if factor < 1.0:
317
+ logger.warning_once(f"`rope_scaling`'s factor field must be a float >= 1, got {factor}")
318
+
319
+ # Sets the attention factor as suggested in the paper
320
+ attention_factor = config.rope_scaling.get("attention_factor")
321
+ if attention_factor is None:
322
+ attention_factor = 0.1 * math.log(factor) + 1.0
323
+ if attention_factor < 0:
324
+ logger.warning_once(
325
+ f"`rope_scaling`'s attention_factor field must be a float greater than 0, got {attention_factor}"
326
+ )
327
+
328
+ # Optional config options
329
+ # beta_fast/beta_slow: as suggested in the paper, default to 32/1 (correspondingly)
330
+ beta_fast = config.rope_scaling.get("beta_fast") or 32
331
+ beta_slow = config.rope_scaling.get("beta_slow") or 1
332
+ if not isinstance(beta_fast, float):
333
+ logger.warning_once(f"`rope_scaling`'s beta_fast field must be a float, got {beta_fast}")
334
+ if not isinstance(beta_slow, float):
335
+ logger.warning_once(f"`rope_scaling`'s beta_slow field must be a float, got {beta_fast}")
336
+ if beta_fast < beta_slow:
337
+ logger.warning_once(
338
+ f"`rope_scaling`'s beta_fast field must be greater than beta_slow, got beta_fast={beta_fast} "
339
+ f"(defaults to 32 if None) and beta_slow={beta_slow} (defaults to 1 if None)"
340
+ )
341
+
342
+ # Compute the inverse frequencies
343
+ def find_correction_dim(num_rotations, dim, base, max_position_embeddings):
344
+ """Inverse dimension formula to find the dimension based on the number of rotations"""
345
+ return (dim * math.log(max_position_embeddings / (num_rotations * 2 * math.pi))) / (2 * math.log(base))
346
+
347
+ def find_correction_range(low_rot, high_rot, dim, base, max_position_embeddings):
348
+ """Find dimension range bounds based on rotations"""
349
+ low = math.floor(find_correction_dim(low_rot, dim, base, max_position_embeddings))
350
+ high = math.ceil(find_correction_dim(high_rot, dim, base, max_position_embeddings))
351
+ return max(low, 0), min(high, dim - 1)
352
+
353
+ def linear_ramp_mask(min, max, dim):
354
+ if min == max:
355
+ max += 0.001 # Prevent singularity
356
+
357
+ linear_func = (torch.arange(dim, dtype=torch.float32) - min) / (max - min)
358
+ ramp_func = torch.clamp(linear_func, 0, 1)
359
+ return ramp_func
360
+
361
+ pos_freqs = base ** (torch.arange(0, dim, 2).float().to(device) / dim)
362
+ inv_freq_extrapolation = 1.0 / pos_freqs
363
+ inv_freq_interpolation = 1.0 / (factor * pos_freqs)
364
+
365
+ low, high = find_correction_range(beta_fast, beta_slow, dim, base, max_position_embeddings)
366
+
367
+ # Get n-dimensional rotational scaling corrected for extrapolation
368
+ inv_freq_mask = 1 - linear_ramp_mask(low, high, dim // 2).float().to(device)
369
+ inv_freq = inv_freq_interpolation * (1 - inv_freq_mask) + inv_freq_extrapolation * inv_freq_mask
370
+
371
+ return inv_freq, attention_factor
372
+
373
+ def __init__(self, config: ExaoneConfig, device=None):
374
+ ROPE_INIT_FUNCTIONS = {
375
+ "default": self._compute_default_rope_parameters,
376
+ "linear": self._compute_linear_scaling_rope_parameters,
377
+ "dynamic": self._compute_dynamic_ntk_parameters,
378
+ "yarn": self._compute_yarn_parameters,
379
+ }
380
+
381
+ super().__init__()
382
+ if config.rope_scaling is not None:
383
+ self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
384
+ else:
385
+ self.rope_type = "default"
386
+ self.max_seq_len = config.max_position_embeddings
387
+ self.original_max_seq_len = config.max_position_embeddings
388
+
389
+ self.config = config
390
+ if self.rope_type not in ROPE_INIT_FUNCTIONS:
391
+ raise KeyError(f"The EXAONE model does not support RoPE type: {self.rope_type}")
392
+ self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
393
+
394
+ inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
395
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
396
+ self.original_inv_freq = self.inv_freq
397
+
398
+ def _update_freq(self, position_ids, device):
399
+ """
400
+ dynamic RoPE layers should recompute `inv_freq` in the following situations:
401
+ 1 - growing beyond the cached sequence length (allow scaling)
402
+ 2 - the current sequence length is in the original scale (avoid losing precision with small sequences)
403
+ """
404
+ seq_len = torch.max(position_ids) + 1
405
+ if seq_len > self.max_seq_len: # expand to seq_len
406
+ inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, seq_len=seq_len)
407
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
408
+ self.max_seq_len = seq_len
409
+
410
+ if seq_len < self.original_max_seq_len and self.max_seq_len > self.original_max_seq_len: # reset to original
411
+ self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
412
+ self.max_seq_len = self.original_max_seq_len
413
+
414
+ @torch.no_grad()
415
+ def forward(self, x, position_ids):
416
+ if "dynamic" in self.rope_type:
417
+ self._update_freq(position_ids, device=x.device)
418
+
419
+ inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
420
+ position_ids_expanded = position_ids[:, None, :].float()
421
+
422
+ device_type = x.device.type
423
+ device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
424
+ with torch.autocast(device_type=device_type, enabled=False):
425
+ freqs = (inv_freq_expanded @ position_ids_expanded).transpose(1, 2)
426
+ emb = torch.cat((freqs, freqs), dim=-1)
427
+ cos, sin = emb.cos(), emb.sin()
428
+
429
+ cos, sin = cos * self.attention_scaling, sin * self.attention_scaling
430
+ return cos.to(x.dtype), sin.to(x.dtype)
431
+
432
+
433
+ class ExaoneSelfAttention(nn.Module):
434
+ def __init__(self, config: ExaoneConfig, layer_idx: Optional[int] = None):
435
+ super().__init__()
436
+ self.config = config
437
+ self.layer_idx = layer_idx
438
+ self.embed_dim = config.hidden_size
439
+ self.num_heads = config.num_attention_heads
440
+ self.head_dim = self.embed_dim // self.num_heads
441
+ self.num_key_value_heads = config.num_key_value_heads
442
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
443
+ self.attention_dropout_rate = config.attention_dropout
444
+
445
+ if self.head_dim * self.num_heads != self.embed_dim:
446
+ raise ValueError(
447
+ f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`: {self.num_heads})."
448
+ )
449
+
450
+ self.rotary = ExaoneRotaryEmbedding(config)
451
+
452
+ self.k_proj = nn.Linear(self.embed_dim, self.num_key_value_heads * self.head_dim, bias=False)
453
+ self.v_proj = nn.Linear(self.embed_dim, self.num_key_value_heads * self.head_dim, bias=False)
454
+ self.q_proj = nn.Linear(self.embed_dim, self.num_heads * self.head_dim, bias=False)
455
+ self.out_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False)
456
+
457
+ def forward(
458
+ self,
459
+ hidden_states: torch.Tensor,
460
+ attention_mask: Optional[torch.Tensor] = None,
461
+ position_ids: Optional[torch.LongTensor] = None,
462
+ past_key_value: Optional[Cache] = None,
463
+ output_attentions: Optional[bool] = False,
464
+ use_cache: Optional[bool] = False,
465
+ cache_position: Optional[torch.LongTensor] = None,
466
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
467
+ **kwargs,
468
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
469
+
470
+ bsz, q_len, _ = hidden_states.size()
471
+ query_states = self.q_proj(hidden_states)
472
+ key_states = self.k_proj(hidden_states)
473
+ value_states = self.v_proj(hidden_states)
474
+
475
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
476
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
477
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
478
+
479
+ if position_embeddings is None:
480
+ cos, sin = self.rotary(value_states, position_ids=position_ids)
481
+ else:
482
+ cos, sin = position_embeddings
483
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
484
+
485
+ if past_key_value is not None:
486
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
487
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
488
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
489
+
490
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
491
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
492
+
493
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
494
+
495
+ if attention_mask is not None:
496
+ causal_mask = attention_mask[:, :, :, :key_states.shape[-2]]
497
+ attn_weights = attn_weights + causal_mask
498
+
499
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
500
+ attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout_rate, training=self.training)
501
+ attn_output = torch.matmul(attn_weights, value_states)
502
+
503
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
504
+ raise ValueError(
505
+ f"Attention outputs should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
506
+ f" {attn_output.size()}"
507
+ )
508
+
509
+ attn_output = attn_output.transpose(1, 2).contiguous()
510
+ attn_output = attn_output.reshape(bsz, q_len, self.embed_dim).contiguous()
511
+
512
+ attn_output = self.out_proj(attn_output)
513
+
514
+ if not output_attentions:
515
+ attn_weights = None
516
+
517
+ return attn_output, attn_weights, past_key_value
518
+
519
+
520
+ class ExaoneFlashAttention(ExaoneSelfAttention):
521
+ def __init__(self, *args, **kwargs):
522
+ super().__init__(*args, **kwargs)
523
+
524
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
525
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
526
+
527
+ def forward(
528
+ self,
529
+ hidden_states: torch.Tensor,
530
+ attention_mask: Optional[torch.Tensor] = None,
531
+ position_ids: Optional[torch.LongTensor] = None,
532
+ past_key_value: Optional[Cache] = None,
533
+ output_attentions: Optional[bool] = False,
534
+ use_cache: Optional[bool] = False,
535
+ cache_position: Optional[torch.LongTensor] = None,
536
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
537
+ **kwargs,
538
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
539
+ if isinstance(past_key_value, StaticCache):
540
+ raise ValueError(
541
+ "`static` cache implementation is not compatible with `attn_implementation==flash_attention_2` "
542
+ "make sure to use `sdpa` in the mean time, and open an issue at https://github.com/huggingface/transformers"
543
+ )
544
+
545
+ output_attentions = False
546
+
547
+ bsz, q_len, h_size = hidden_states.size()
548
+
549
+ query_states = self.q_proj(hidden_states)
550
+ key_states = self.k_proj(hidden_states)
551
+ value_states = self.v_proj(hidden_states)
552
+
553
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
554
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
555
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
556
+
557
+ if position_embeddings is None:
558
+ cos, sin = self.rotary(value_states, position_ids=position_ids)
559
+ else:
560
+ cos, sin = position_embeddings
561
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
562
+
563
+ if past_key_value is not None:
564
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
565
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
566
+ # Only update cache as shape of [bsz, n_head, q_len, head_dim]
567
+ # TODO: need to be fixed when transformers' KV cache layout is changed
568
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
569
+
570
+ query_states = query_states.transpose(1, 2)
571
+ key_states = key_states.transpose(1, 2)
572
+ value_states = value_states.transpose(1, 2)
573
+
574
+ # In PEFT, usually we cast the layer norms in float32 for training stability reasons
575
+ # therefore the input hidden states gets silently casted in float32. Hence, we need
576
+ # cast them back in the correct dtype just to be sure everything works as expected.
577
+ input_dtype = query_states.dtype
578
+ if input_dtype == torch.float32:
579
+ if torch.is_autocast_enabled():
580
+ target_dtype = torch.get_autocast_gpu_dtype()
581
+ # Handle the case where the model is quantized
582
+ elif hasattr(self.config, "_pre_quantization_dtype"):
583
+ target_dtype = self.config._pre_quantization_dtype
584
+ else:
585
+ target_dtype = self.q_proj.weight.dtype
586
+
587
+ logger.warning_once(
588
+ f"The input hidden states seems to be silently casted in float32, this might be related to"
589
+ f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
590
+ f" {target_dtype}."
591
+ )
592
+
593
+ query_states = query_states.to(target_dtype)
594
+ key_states = key_states.to(target_dtype)
595
+ value_states = value_states.to(target_dtype)
596
+
597
+ dropout_rate = self.attention_dropout_rate if self.training else 0.0
598
+
599
+ attn_output = self._flash_attention_forward(
600
+ query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate, is_causal=True
601
+ )
602
+
603
+ attn_output = attn_output.reshape(bsz, q_len, self.embed_dim).contiguous()
604
+ attn_output = self.out_proj(attn_output)
605
+
606
+ if not output_attentions:
607
+ attn_weights = None
608
+
609
+ return attn_output, attn_weights, past_key_value
610
+
611
+ @staticmethod
612
+ def _flash_attention_forward(
613
+ query_states: torch.Tensor,
614
+ key_states: torch.Tensor,
615
+ value_states: torch.Tensor,
616
+ attention_mask: torch.Tensor,
617
+ query_length: int,
618
+ is_causal: bool,
619
+ dropout: float = 0.0,
620
+ softmax_scale: Optional[float] = None,
621
+ sliding_window: Optional[int] = None,
622
+ use_top_left_mask: bool = False,
623
+ softcap: Optional[float] = None,
624
+ deterministic: bool = os.environ.get("FLASH_ATTENTION_DETERMINISTIC", "0") == "1",
625
+ ):
626
+ """
627
+ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
628
+ first unpad the input, then computes the attention scores and pad the final attention scores.
629
+
630
+ Args:
631
+ query_states (`torch.Tensor`):
632
+ Input query states to be passed to Flash Attention API
633
+ key_states (`torch.Tensor`):
634
+ Input key states to be passed to Flash Attention API
635
+ value_states (`torch.Tensor`):
636
+ Input value states to be passed to Flash Attention API
637
+ attention_mask (`torch.Tensor`):
638
+ The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
639
+ position of padding tokens and 1 for the position of non-padding tokens.
640
+ dropout (`float`):
641
+ Attention dropout
642
+ softmax_scale (`float`, *optional*):
643
+ The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
644
+ use_top_left_mask (`bool`, defaults to `False`):
645
+ flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference.
646
+ softcap (`float`, *optional*):
647
+ Softcap for the attention logits, used e.g. in gemma2.
648
+ deterministic (`bool`, *optional*):
649
+ Determines if the deterministic option introduced in flash_attn>=2.4.1 is enabled.
650
+ """
651
+ if not use_top_left_mask:
652
+ causal = is_causal
653
+ else:
654
+ # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__.
655
+ causal = is_causal and query_length != 1
656
+
657
+ # Assuming 4D tensors, key_states.shape[1] is the key/value sequence length (source length).
658
+ use_sliding_windows = (
659
+ _flash_supports_window_size and sliding_window is not None and key_states.shape[1] > sliding_window
660
+ )
661
+ flash_kwargs = {"window_size": (sliding_window, sliding_window)} if use_sliding_windows else {}
662
+
663
+ if softcap is not None:
664
+ flash_kwargs["softcap"] = softcap
665
+
666
+ # Contains at least one padding token in the sequence
667
+ if attention_mask is not None:
668
+ batch_size = query_states.shape[0]
669
+ query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = ExaoneFlashAttention._upad_input(
670
+ query_states, key_states, value_states, attention_mask, query_length
671
+ )
672
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
673
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
674
+
675
+ attn_output_unpad = flash_attn_varlen_func(
676
+ query_states,
677
+ key_states,
678
+ value_states,
679
+ cu_seqlens_q=cu_seqlens_q,
680
+ cu_seqlens_k=cu_seqlens_k,
681
+ max_seqlen_q=max_seqlen_in_batch_q,
682
+ max_seqlen_k=max_seqlen_in_batch_k,
683
+ dropout_p=dropout,
684
+ softmax_scale=softmax_scale,
685
+ causal=causal,
686
+ **flash_kwargs,
687
+ )
688
+ attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
689
+ else:
690
+ attn_output = flash_attn_func(
691
+ query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal, **flash_kwargs
692
+ )
693
+
694
+ return attn_output
695
+
696
+ @staticmethod
697
+ def _upad_input(
698
+ query_layer: torch.Tensor,
699
+ key_layer: torch.Tensor,
700
+ value_layer: torch.Tensor,
701
+ attention_mask: torch.Tensor,
702
+ query_length: int,
703
+ ):
704
+ """
705
+ Unpads query, key, and values tensors, using a single dimension for all tokens even though they belong to different batches.
706
+
707
+ This function is used instead of `flash_attn.bert_padding.unpad_input` in order to avoid the recomputation of the same intermediary
708
+ tensors for query, key, value tensors.
709
+
710
+ Arguments:
711
+ query_layer (`torch.Tensor`):
712
+ Query state with padding. Shape: (batch_size, query_length, num_heads, head_dim).
713
+ key_layer (`torch.Tensor`):
714
+ Key state with padding. Shape: (batch_size, kv_seq_len, num_key_value_heads, head_dim).
715
+ value_layer (`torch.Tensor`):
716
+ Value state with padding. Shape: (batch_size, kv_seq_len, num_key_value_heads, head_dim).
717
+ attention_mask (`torch.Tensor`):
718
+ Boolean or int tensor of shape (batch_size, sequence_length), 1 means valid and 0 means not valid.
719
+ query_length (`int`):
720
+ Target length.
721
+
722
+ Return:
723
+ query_layer (`torch.Tensor):
724
+ Query state without padding. Shape: (total_target_length, num_heads, head_dim).
725
+ key_layer (`torch.Tensor`):
726
+ Key state with padding. Shape: (total_source_length, num_key_value_heads, head_dim).
727
+ value_layer (`torch.Tensor`):
728
+ Value state with padding. Shape: (total_source_length, num_key_value_heads, head_dim).
729
+ indices_q (`torch.Tensor`):
730
+ The indices of non-masked tokens from the flattened input target sequence.
731
+ (cu_seqlens_q, cu_seqlens_k) (`Tuple[int]`):
732
+ The cumulative sequence lengths for the target (query) and source (key, value), used to index into ragged (unpadded) tensors. `cu_seqlens` shape is (batch_size + 1,).
733
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k) (`Tuple[int]`):
734
+ Maximum sequence length in batch (`max_seqlen_in_batch_q` for the target sequence i.e. query, `max_seqlen_in_batch_k` for the source sequence i.e. key/value).
735
+ """
736
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = ExaoneFlashAttention._get_unpad_data(attention_mask)
737
+ batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
738
+
739
+ key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k)
740
+ value_layer = index_first_axis(
741
+ value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
742
+ )
743
+ if query_length == kv_seq_len:
744
+ query_layer = index_first_axis(query_layer.reshape(batch_size * kv_seq_len, -1, head_dim), indices_k)
745
+ cu_seqlens_q = cu_seqlens_k
746
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
747
+ indices_q = indices_k
748
+ elif query_length == 1:
749
+ max_seqlen_in_batch_q = 1
750
+ cu_seqlens_q = torch.arange(
751
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
752
+ ) # There is a memcpy here, that is very bad.
753
+ indices_q = cu_seqlens_q[:-1]
754
+ query_layer = query_layer.squeeze(1)
755
+ else:
756
+ # The -q_len: slice assumes left padding.
757
+ attention_mask = attention_mask[:, -query_length:]
758
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
759
+
760
+ return (
761
+ query_layer,
762
+ key_layer,
763
+ value_layer,
764
+ indices_q,
765
+ (cu_seqlens_q, cu_seqlens_k),
766
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
767
+ )
768
+
769
+ @staticmethod
770
+ def _get_unpad_data(attention_mask: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, int]:
771
+ """
772
+ Retrieves indexing data required to repad unpadded (ragged) tensors.
773
+
774
+ Arguments:
775
+ attention_mask (`torch.Tensor`):
776
+ Boolean or int tensor of shape (batch_size, sequence_length), 1 means valid and 0 means not valid.
777
+
778
+ Return:
779
+ indices (`torch.Tensor):
780
+ The indices of non-masked tokens from the flattened input sequence.
781
+ cu_seqlens (`torch.Tensor`):
782
+ The cumulative sequence lengths, used to index into ragged (unpadded) tensors. `cu_seqlens` shape is (batch_size + 1,).
783
+ max_seqlen_in_batch (`int`):
784
+ Maximum sequence length in batch.
785
+ """
786
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
787
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
788
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
789
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
790
+ return (
791
+ indices,
792
+ cu_seqlens,
793
+ max_seqlen_in_batch,
794
+ )
795
+
796
+
797
+ class ExaoneSdpaAttention(ExaoneSelfAttention):
798
+ def __init__(self, *args, **kwargs):
799
+ super().__init__(*args, **kwargs)
800
+
801
+ def forward(
802
+ self,
803
+ hidden_states: torch.Tensor,
804
+ attention_mask: Optional[torch.Tensor] = None,
805
+ position_ids: Optional[torch.LongTensor] = None,
806
+ past_key_value: Optional[Cache] = None,
807
+ output_attentions: Optional[bool] = False,
808
+ use_cache: Optional[bool] = False,
809
+ cache_position: Optional[torch.LongTensor] = None,
810
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
811
+ **kwargs,
812
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
813
+
814
+ if output_attentions:
815
+ logger.warning_once(
816
+ "ExaoneModel is using ExaoneSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
817
+ 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
818
+ )
819
+ return super().forward(
820
+ hidden_states=hidden_states,
821
+ attention_mask=attention_mask,
822
+ position_ids=position_ids,
823
+ past_key_value=past_key_value,
824
+ output_attentions=output_attentions,
825
+ use_cache=use_cache,
826
+ cache_position=cache_position,
827
+ position_embeddings=position_embeddings,
828
+ **kwargs,
829
+ )
830
+
831
+ bsz, q_len, _ = hidden_states.size()
832
+
833
+ query_states = self.q_proj(hidden_states)
834
+ key_states = self.k_proj(hidden_states)
835
+ value_states = self.v_proj(hidden_states)
836
+
837
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
838
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
839
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
840
+
841
+ if position_embeddings is None:
842
+ cos, sin = self.rotary(value_states, position_ids=position_ids)
843
+ else:
844
+ cos, sin = position_embeddings
845
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
846
+
847
+ if past_key_value is not None:
848
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
849
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
850
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
851
+
852
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
853
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
854
+
855
+ causal_mask = attention_mask
856
+ if attention_mask is not None:
857
+ causal_mask = causal_mask[:, :, :, :key_states.shape[-2]]
858
+
859
+ # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
860
+ # Reference: https://github.com/pytorch/pytorch/issues/112577.
861
+ if query_states.device.type == "cuda" and causal_mask is not None:
862
+ query_states = query_states.contiguous()
863
+ key_states = key_states.contiguous()
864
+ value_states = value_states.contiguous()
865
+
866
+ # We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
867
+ # in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
868
+ is_causal = True if causal_mask is None and q_len > 1 else False
869
+
870
+ attn_output = torch.nn.functional.scaled_dot_product_attention(
871
+ query_states,
872
+ key_states,
873
+ value_states,
874
+ attn_mask=causal_mask,
875
+ dropout_p=self.attention_dropout_rate if self.training else 0.0,
876
+ is_causal=is_causal,
877
+ )
878
+
879
+ attn_output = attn_output.transpose(1, 2).contiguous()
880
+ attn_output = attn_output.reshape(bsz, q_len, self.embed_dim).contiguous()
881
+
882
+ attn_output = self.out_proj(attn_output)
883
+
884
+ return attn_output, None, past_key_value
885
+
886
+
887
+ class ExaoneAttention(nn.Module):
888
+ def __init__(self, config, layer_id=0):
889
+ super().__init__()
890
+ self.layer_id = layer_id
891
+ if 'flash' in config._attn_implementation:
892
+ self.attention = ExaoneFlashAttention(config, self.layer_id)
893
+ elif 'sdpa' in config._attn_implementation:
894
+ self.attention = ExaoneSdpaAttention(config, self.layer_id)
895
+ else:
896
+ self.attention = ExaoneSelfAttention(config, self.layer_id)
897
+
898
+ def forward(
899
+ self,
900
+ hidden_states: torch.Tensor,
901
+ attention_mask: Optional[torch.Tensor] = None,
902
+ position_ids: Optional[torch.LongTensor] = None,
903
+ past_key_value: Optional[Cache] = None,
904
+ output_attentions: Optional[bool] = False,
905
+ use_cache: Optional[bool] = False,
906
+ cache_position: Optional[torch.LongTensor] = None,
907
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
908
+ **kwargs,
909
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
910
+
911
+ return self.attention(
912
+ hidden_states=hidden_states,
913
+ attention_mask=attention_mask,
914
+ position_ids=position_ids,
915
+ past_key_value=past_key_value,
916
+ output_attentions=output_attentions,
917
+ use_cache=use_cache,
918
+ cache_position=cache_position,
919
+ position_embeddings=position_embeddings,
920
+ **kwargs,
921
+ )
922
+
923
+
924
+ class ExaoneGatedMLP(nn.Module):
925
+ def __init__(self, intermediate_size, config):
926
+ super().__init__()
927
+ self.config = config
928
+ embed_dim = config.hidden_size
929
+ self.c_fc_0 = nn.Linear(embed_dim, intermediate_size, bias=False)
930
+ self.c_fc_1 = nn.Linear(embed_dim, intermediate_size, bias=False)
931
+ self.c_proj = nn.Linear(intermediate_size, embed_dim, bias=False)
932
+ self.act = ACT2FN[config.activation_function]
933
+
934
+ def forward(self, hidden_states):
935
+ output_proj = self.c_proj(self.act(self.c_fc_0(hidden_states)) * self.c_fc_1(hidden_states))
936
+ return output_proj
937
+
938
+
939
+ class ExaoneBlock(nn.Module):
940
+ def __init__(self, config, layer_id):
941
+ super().__init__()
942
+ self.config = config
943
+ hidden_size = config.hidden_size
944
+ inner_dim = config.intermediate_size if config.intermediate_size is not None else 4 * hidden_size
945
+ self.ln_1 = ExaoneRMSNorm(hidden_size = hidden_size, eps=config.layer_norm_epsilon)
946
+ self.attn = ExaoneAttention(config, layer_id)
947
+ self.ln_2 = ExaoneRMSNorm(hidden_size = hidden_size, eps=config.layer_norm_epsilon)
948
+ self.mlp = ExaoneGatedMLP(inner_dim, config)
949
+
950
+ def forward(
951
+ self,
952
+ hidden_states: torch.Tensor,
953
+ attention_mask: Optional[torch.Tensor] = None,
954
+ position_ids: Optional[torch.LongTensor] = None,
955
+ past_key_value: Optional[Cache] = None,
956
+ output_attentions: Optional[bool] = False,
957
+ use_cache: Optional[bool] = False,
958
+ cache_position: Optional[torch.LongTensor] = None,
959
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
960
+ **kwargs,
961
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
962
+
963
+ residual = hidden_states
964
+ hidden_states = self.ln_1(hidden_states)
965
+
966
+ hidden_states, self_attn_weights, present_key_value = self.attn(
967
+ hidden_states=hidden_states,
968
+ attention_mask=attention_mask,
969
+ position_ids=position_ids,
970
+ past_key_value=past_key_value,
971
+ output_attentions=output_attentions,
972
+ use_cache=use_cache,
973
+ cache_position=cache_position,
974
+ position_embeddings=position_embeddings,
975
+ **kwargs,
976
+ )
977
+ # residual connection
978
+ hidden_states = residual + hidden_states
979
+
980
+ residual = hidden_states
981
+ hidden_states = self.ln_2(hidden_states)
982
+ hidden_states = self.mlp(hidden_states)
983
+
984
+ hidden_states = residual + hidden_states
985
+
986
+ outputs = (hidden_states,)
987
+
988
+ if output_attentions:
989
+ outputs += (self_attn_weights,)
990
+
991
+ if use_cache:
992
+ outputs += (present_key_value,)
993
+
994
+ return outputs
995
+
996
+
997
+ class ExaonePreTrainedModel(PreTrainedModel):
998
+ """
999
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
1000
+ models.
1001
+ """
1002
+
1003
+ config_class = ExaoneConfig
1004
+ base_model_prefix = "transformer"
1005
+ supports_gradient_checkpointing = True
1006
+ _no_split_modules = ["ExaoneBlock"]
1007
+ _skip_keys_device_placement = "past_key_values"
1008
+ _supports_flash_attn_2 = True
1009
+ _supports_sdpa = True
1010
+ _supports_cache_class = True
1011
+
1012
+ def __init__(self, *inputs, **kwargs):
1013
+ super().__init__(*inputs, **kwargs)
1014
+
1015
+ def _init_weights(self, module):
1016
+ """Initialize the weights."""
1017
+ if isinstance(module, (nn.Linear,)):
1018
+ # Slightly different from the TF version which uses truncated_normal for initialization
1019
+ # cf https://github.com/pytorch/pytorch/pull/5617
1020
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
1021
+ if module.bias is not None:
1022
+ module.bias.data.zero_()
1023
+ elif isinstance(module, nn.Embedding):
1024
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
1025
+ if module.padding_idx is not None:
1026
+ module.weight.data[module.padding_idx].zero_()
1027
+ elif isinstance(module, ExaoneRMSNorm):
1028
+ module.weight.data.fill_(1.0)
1029
+
1030
+
1031
+ EXAONE_START_DOCSTRING = r"""
1032
+
1033
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
1034
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
1035
+ etc.)
1036
+
1037
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
1038
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
1039
+ and behavior.
1040
+
1041
+ Parameters:
1042
+ config (:class:`~transformers.ExaoneConfig`): Model configuration class with all the parameters of the model.
1043
+ Initializing with a config file does not load the weights associated with the model, only the
1044
+ configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model weights.
1045
+ """
1046
+
1047
+ EXAONE_INPUTS_DOCSTRING = r"""
1048
+ Args:
1049
+ input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, input_ids_length)`):
1050
+ :obj:`input_ids_length` = ``sequence_length`` if :obj:`past_key_values` is ``None`` else
1051
+ ``past_key_values.get_seq_length()`` (``sequence_length`` of input past key value states). Indices of input
1052
+ sequence tokens in the vocabulary.
1053
+
1054
+ If :obj:`past_key_values` is used, only ``input_ids`` that do not have their past calculated should be
1055
+ passed as ``input_ids``.
1056
+
1057
+ `What are input IDs? <../glossary.html#input-ids>`__
1058
+ attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
1059
+ Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``:
1060
+
1061
+ - 1 for tokens that are **not masked**,
1062
+ - 0 for tokens that are **masked**.
1063
+
1064
+ `What are attention masks? <../glossary.html#attention-mask>`__
1065
+ position_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
1066
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range ``[0,
1067
+ config.max_position_embeddings - 1]``.
1068
+
1069
+ `What are position IDs? <../glossary.html#position-ids>`_
1070
+ past_key_values (:obj:`Cache`, `optional`):
1071
+ Contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see
1072
+ :obj:`past_key_values` output below). Can be used to speed up sequential decoding. This typically consists
1073
+ in the `past_key_values` returned by the model at a previous stage of decoding, when `use_cache=True` or
1074
+ `config.use_cache=True`.
1075
+ inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
1076
+ Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation.
1077
+ This is useful if you want more control over how to convert :obj:`input_ids` indices into associated
1078
+ vectors than the model's internal embedding lookup matrix.
1079
+
1080
+ If :obj:`past_key_values` is used, optionally only the last :obj:`inputs_embeds` have to be input (see
1081
+ :obj:`past_key_values`).
1082
+ use_cache (:obj:`bool`, `optional`):
1083
+ If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up
1084
+ decoding (see :obj:`past_key_values`).
1085
+ output_attentions (:obj:`bool`, `optional`):
1086
+ Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned
1087
+ tensors for more detail.
1088
+ output_hidden_states (:obj:`bool`, `optional`):
1089
+ Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for
1090
+ more detail.
1091
+ return_dict (:obj:`bool`, `optional`):
1092
+ Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple.
1093
+ cache_position (:obj:`torch.LongTensor` of shape :obj:`(sequence_length)`, `optional`):
1094
+ Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
1095
+ this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
1096
+ the complete sequence length.
1097
+ """
1098
+
1099
+
1100
+ @add_start_docstrings(
1101
+ "The bare EXAONE Model transformer outputting raw hidden-states without any specific head on top.",
1102
+ EXAONE_START_DOCSTRING,
1103
+ )
1104
+ class ExaoneModel(ExaonePreTrainedModel):
1105
+ def __init__(self, config):
1106
+ super().__init__(config)
1107
+ self.config = config
1108
+ self.embed_dim = config.hidden_size
1109
+ self.wte = nn.Embedding(config.vocab_size, self.embed_dim, self.config.pad_token_id)
1110
+ self.drop = nn.Dropout(float(config.embed_dropout))
1111
+ self.h = nn.ModuleList([ExaoneBlock(config, layer_id=i) for i in range(config.num_layers)])
1112
+ self.ln_f = ExaoneRMSNorm(hidden_size=self.embed_dim, eps=config.layer_norm_epsilon)
1113
+ self.rotary = ExaoneRotaryEmbedding(config)
1114
+ self.gradient_checkpointing = False
1115
+ # Initialize weights and apply final processing
1116
+ self.post_init()
1117
+
1118
+ def get_input_embeddings(self):
1119
+ return self.wte
1120
+
1121
+ def set_input_embeddings(self, new_embeddings):
1122
+ self.wte = new_embeddings
1123
+
1124
+ @add_start_docstrings_to_model_forward(EXAONE_INPUTS_DOCSTRING)
1125
+ @add_code_sample_docstrings(
1126
+ checkpoint=_CHECKPOINT_FOR_DOC,
1127
+ output_type=BaseModelOutputWithPastAndCrossAttentions,
1128
+ config_class=_CONFIG_FOR_DOC,
1129
+ )
1130
+ def forward(
1131
+ self,
1132
+ input_ids: Optional[torch.Tensor] = None,
1133
+ attention_mask: Optional[torch.Tensor] = None,
1134
+ position_ids: Optional[torch.Tensor] = None,
1135
+ past_key_values: Optional[Cache] = None,
1136
+ inputs_embeds: Optional[torch.Tensor] = None,
1137
+ use_cache: Optional[bool] = None,
1138
+ output_attentions: Optional[bool] = None,
1139
+ output_hidden_states: Optional[bool] = None,
1140
+ return_dict: Optional[bool] = None,
1141
+ cache_position: Optional[torch.LongTensor] = None,
1142
+ ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPast]:
1143
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1144
+ output_hidden_states = (
1145
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1146
+ )
1147
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
1148
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1149
+
1150
+ if self.gradient_checkpointing and self.training:
1151
+ if use_cache:
1152
+ logger.warning_once(
1153
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
1154
+ )
1155
+ use_cache = False
1156
+
1157
+ if input_ids is not None and inputs_embeds is not None:
1158
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
1159
+ elif input_ids is not None:
1160
+ batch_size, seq_length = input_ids.shape[:2]
1161
+ elif inputs_embeds is not None:
1162
+ batch_size, seq_length = inputs_embeds.shape[:2]
1163
+ else:
1164
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
1165
+
1166
+ return_legacy_cache = False
1167
+ if (
1168
+ use_cache and not isinstance(past_key_values, Cache) and not self.training
1169
+ ): # kept for BC (non `Cache` `past_key_values` inputs)
1170
+ return_legacy_cache = True
1171
+ past_key_values = DynamicCache.from_legacy_cache(past_key_values)
1172
+ logger.warning_once(
1173
+ "We detected that you are passing `past_key_values` as a tuple and this is deprecated and will be removed in v4.43. "
1174
+ "Please use an appropriate `Cache` class (https://huggingface.co/docs/transformers/v4.41.3/en/internal/generation_utils#transformers.Cache)"
1175
+ )
1176
+
1177
+ if inputs_embeds is None:
1178
+ inputs_embeds = self.wte(input_ids)
1179
+
1180
+ if cache_position is None:
1181
+ past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
1182
+ cache_position = torch.arange(
1183
+ past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
1184
+ )
1185
+ if position_ids is None:
1186
+ position_ids = cache_position.unsqueeze(0)
1187
+
1188
+ causal_mask = self._update_causal_mask(
1189
+ attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
1190
+ )
1191
+
1192
+ hidden_states = inputs_embeds
1193
+ hidden_states = self.drop(hidden_states)
1194
+
1195
+ position_embeddings = self.rotary(hidden_states, position_ids)
1196
+
1197
+ all_hidden_states = () if output_hidden_states else None
1198
+ all_self_attns = () if output_attentions else None
1199
+ next_decoder_cache = None
1200
+
1201
+ for block in self.h:
1202
+ if output_hidden_states:
1203
+ all_hidden_states = all_hidden_states + (hidden_states,)
1204
+
1205
+ if self.gradient_checkpointing and self.training:
1206
+ outputs = self._gradient_checkpointing_func(
1207
+ block.__call__,
1208
+ hidden_states,
1209
+ causal_mask,
1210
+ position_ids,
1211
+ past_key_values,
1212
+ output_attentions,
1213
+ use_cache,
1214
+ cache_position,
1215
+ position_embeddings,
1216
+ )
1217
+ else:
1218
+ outputs = block(
1219
+ hidden_states,
1220
+ attention_mask=causal_mask,
1221
+ position_ids=position_ids,
1222
+ past_key_value=past_key_values,
1223
+ output_attentions=output_attentions,
1224
+ use_cache=use_cache,
1225
+ cache_position=cache_position,
1226
+ position_embeddings=position_embeddings,
1227
+ )
1228
+
1229
+ hidden_states = outputs[0]
1230
+ if use_cache:
1231
+ next_decoder_cache = outputs[2 if output_attentions else 1]
1232
+
1233
+ if output_attentions:
1234
+ all_self_attns += (outputs[1],)
1235
+
1236
+ hidden_states = self.ln_f(hidden_states)
1237
+ # Add last hidden state
1238
+ if output_hidden_states:
1239
+ all_hidden_states += (hidden_states,)
1240
+
1241
+ next_cache = None
1242
+ if use_cache:
1243
+ next_cache = next_decoder_cache.to_legacy_cache() if return_legacy_cache else next_decoder_cache
1244
+ if not return_dict:
1245
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
1246
+
1247
+ return BaseModelOutputWithPast(
1248
+ last_hidden_state=hidden_states,
1249
+ past_key_values=next_cache,
1250
+ hidden_states=all_hidden_states,
1251
+ attentions=all_self_attns,
1252
+ )
1253
+
1254
+ # copied from llama
1255
+ def _update_causal_mask(
1256
+ self,
1257
+ attention_mask: torch.Tensor,
1258
+ input_tensor: torch.Tensor,
1259
+ cache_position: torch.Tensor,
1260
+ past_key_values: Cache,
1261
+ output_attentions: bool,
1262
+ ):
1263
+ # TODO: As of torch==2.2.0, the `attention_mask` passed to the model in `generate` is 2D and of dynamic length even when the static
1264
+ # KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at each decode steps due to the dynamic shapes.
1265
+ # (`recording cudagraph tree for symint key 13`, etc.), which is VERY slow. A workaround is `@torch.compiler.disable`, but this prevents using
1266
+ # `fullgraph=True`. See more context in https://github.com/huggingface/transformers/pull/29114
1267
+
1268
+ if self.config._attn_implementation == "flash_attention_2":
1269
+ if attention_mask is not None and 0.0 in attention_mask:
1270
+ return attention_mask
1271
+ return None
1272
+
1273
+ # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
1274
+ # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
1275
+ # to infer the attention mask.
1276
+ past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
1277
+ using_static_cache = isinstance(past_key_values, StaticCache)
1278
+
1279
+ # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
1280
+ if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
1281
+ if AttentionMaskConverter._ignore_causal_mask_sdpa(
1282
+ attention_mask,
1283
+ inputs_embeds=input_tensor,
1284
+ past_key_values_length=past_seen_tokens,
1285
+ is_training=self.training,
1286
+ ):
1287
+ return None
1288
+
1289
+ dtype, device = input_tensor.dtype, input_tensor.device
1290
+ min_dtype = torch.finfo(dtype).min
1291
+ sequence_length = input_tensor.shape[1]
1292
+ if using_static_cache:
1293
+ target_length = past_key_values.get_max_length()
1294
+ else:
1295
+ target_length = (
1296
+ attention_mask.shape[-1]
1297
+ if isinstance(attention_mask, torch.Tensor)
1298
+ else past_seen_tokens + sequence_length + 1
1299
+ )
1300
+
1301
+ # In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
1302
+ causal_mask = _prepare_4d_causal_attention_mask_with_cache_position(
1303
+ attention_mask,
1304
+ sequence_length=sequence_length,
1305
+ target_length=target_length,
1306
+ dtype=dtype,
1307
+ device=device,
1308
+ min_dtype=min_dtype,
1309
+ cache_position=cache_position,
1310
+ batch_size=input_tensor.shape[0],
1311
+ )
1312
+
1313
+ if (
1314
+ self.config._attn_implementation == "sdpa"
1315
+ and attention_mask is not None
1316
+ and attention_mask.device.type == "cuda"
1317
+ and not output_attentions
1318
+ ):
1319
+ # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
1320
+ # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
1321
+ # Details: https://github.com/pytorch/pytorch/issues/110213
1322
+ causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
1323
+
1324
+ return causal_mask
1325
+
1326
+
1327
+ @add_start_docstrings(
1328
+ """
1329
+ The EXAONE Model transformer with a language modeling head on top (linear layer with weights tied to the input
1330
+ embeddings).
1331
+ """,
1332
+ EXAONE_START_DOCSTRING,
1333
+ )
1334
+ class ExaoneForCausalLM(ExaonePreTrainedModel):
1335
+
1336
+ def __init__(self, config):
1337
+ super().__init__(config)
1338
+ self.transformer = ExaoneModel(config)
1339
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
1340
+ self.config = config
1341
+ # Initialize weights and apply final processing
1342
+ self.post_init()
1343
+
1344
+ def get_output_embeddings(self):
1345
+ return self.lm_head
1346
+
1347
+ def set_output_embeddings(self, new_embeddings):
1348
+ self.lm_head = new_embeddings
1349
+
1350
+ @add_start_docstrings_to_model_forward(EXAONE_INPUTS_DOCSTRING)
1351
+ @add_code_sample_docstrings(
1352
+ checkpoint=_CHECKPOINT_FOR_DOC,
1353
+ output_type=BaseModelOutputWithPast,
1354
+ config_class=_CONFIG_FOR_DOC,
1355
+ )
1356
+ def forward(
1357
+ self,
1358
+ input_ids: Optional[torch.Tensor] = None,
1359
+ attention_mask: Optional[torch.Tensor] = None,
1360
+ position_ids: Optional[torch.Tensor] = None,
1361
+ past_key_values: Optional[Cache] = None,
1362
+ inputs_embeds: Optional[torch.Tensor] = None,
1363
+ labels: Optional[torch.Tensor] = None,
1364
+ use_cache: Optional[bool] = None,
1365
+ output_attentions: Optional[bool] = None,
1366
+ output_hidden_states: Optional[bool] = None,
1367
+ return_dict: Optional[bool] = None,
1368
+ cache_position: Optional[torch.LongTensor] = None,
1369
+ ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPast]:
1370
+ r"""
1371
+ Args:
1372
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1373
+ Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
1374
+ `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
1375
+ are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
1376
+
1377
+ Example:
1378
+
1379
+ ```python
1380
+ >>> from transformers import AutoModelForCausalLM, AutoTokenizer
1381
+
1382
+ >>> model = AutoModelForCausalLM.from_pretrained("LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct",
1383
+ trust_remote_code=True)
1384
+ >>> tokenizer = AutoTokenizer.from_pretrained("LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct")
1385
+
1386
+ >>> prompt = "Explain how wonderful you are"
1387
+ >>> messages = [
1388
+ {"role": "system", "content": "You are a helpful assistant."},
1389
+ {"role": "user", "content": prompt}
1390
+ ]
1391
+ >>> input_ids = tokenizer.apply_chat_template(
1392
+ messages,
1393
+ tokenize=True,
1394
+ add_generation_prompt=True,
1395
+ return_tensors="pt"
1396
+ )
1397
+
1398
+ >>> output = model.generate(input_ids, max_new_tokens=128)
1399
+ >>> tokenizer.decode(output[0], skip_special_tokens=True)
1400
+ "[|system|]You are a helpful assistant.\n[|user|]Explain how wonderful you are\n[|assistant|]Thank you for your kind words! I'm here to assist you with information, answer questions, and help you in any way I can. My goal is to provide accurate, helpful, and timely responses. Whether you need help with a specific task, want to learn something new, or just need someone to talk to, I'm here for you. How can I assist you today?"
1401
+ ```
1402
+ """
1403
+
1404
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1405
+ output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1406
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1407
+ transformer_outputs = self.transformer(
1408
+ input_ids,
1409
+ attention_mask=attention_mask,
1410
+ past_key_values=past_key_values,
1411
+ position_ids=position_ids,
1412
+ inputs_embeds=inputs_embeds,
1413
+ use_cache=use_cache,
1414
+ output_attentions=output_attentions,
1415
+ output_hidden_states=output_hidden_states,
1416
+ return_dict=return_dict,
1417
+ cache_position=cache_position,
1418
+ )
1419
+ hidden_states = transformer_outputs[0]
1420
+ lm_logits = self.lm_head(hidden_states)
1421
+ lm_logits = lm_logits.float()
1422
+ loss = None
1423
+ if labels is not None:
1424
+ lm_logits = lm_logits.to(torch.float32)
1425
+
1426
+ # Shift so that tokens < n predict n
1427
+ shift_logits = lm_logits[..., :-1, :].contiguous()
1428
+ shift_labels = labels[..., 1:].contiguous()
1429
+ # Flatten the tokens
1430
+ loss_fct = CrossEntropyLoss()
1431
+ loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
1432
+
1433
+ lm_logits = lm_logits.to(hidden_states.dtype)
1434
+ loss = loss.to(hidden_states.dtype)
1435
+
1436
+ if not return_dict:
1437
+ output = (lm_logits,) + transformer_outputs[1:]
1438
+ return ((loss,) + output) if loss is not None else output
1439
+
1440
+ return CausalLMOutputWithPast(
1441
+ loss=loss,
1442
+ logits=lm_logits,
1443
+ past_key_values=transformer_outputs.past_key_values,
1444
+ hidden_states=transformer_outputs.hidden_states,
1445
+ attentions=transformer_outputs.attentions,
1446
+ )
1447
+
1448
+ def prepare_inputs_for_generation(
1449
+ self,
1450
+ input_ids,
1451
+ past_key_values=None,
1452
+ attention_mask=None,
1453
+ inputs_embeds=None,
1454
+ cache_position=None,
1455
+ position_ids=None,
1456
+ use_cache=True,
1457
+ **kwargs,
1458
+ ):
1459
+ # If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens
1460
+ # Exception 1: when passing input_embeds, input_ids may be missing entries
1461
+ # Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here
1462
+ if past_key_values is not None:
1463
+ if inputs_embeds is not None: # Exception 1
1464
+ input_ids = input_ids[:, -cache_position.shape[0] :]
1465
+ elif input_ids.shape[1] != cache_position.shape[0]: # Default case (the "else", a no op, is Exception 2)
1466
+ input_ids = input_ids[:, cache_position]
1467
+
1468
+ if attention_mask is not None and position_ids is None:
1469
+ # create position_ids on the fly for batch generation
1470
+ position_ids = attention_mask.long().cumsum(-1) - 1
1471
+ position_ids.masked_fill_(attention_mask == 0, 1)
1472
+ if past_key_values:
1473
+ position_ids = position_ids[:, -input_ids.shape[1] :]
1474
+
1475
+ # This `clone` call is needed to avoid recapturing cuda graphs with `torch.compile`'s `mode="reduce-overhead`, as otherwise the input `position_ids` would have various stride during the decoding. Here, simply using `.contiguous()` is not sufficient as in the batch size = 1 case, `position_ids` is already contiguous but with varying stride which retriggers a capture.
1476
+ position_ids = position_ids.clone(memory_format=torch.contiguous_format)
1477
+
1478
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1479
+ if inputs_embeds is not None and cache_position[0] == 0:
1480
+ model_inputs = {"inputs_embeds": inputs_embeds}
1481
+ else:
1482
+ model_inputs = {"input_ids": input_ids}
1483
+
1484
+ if isinstance(past_key_values, StaticCache) and attention_mask.ndim == 2:
1485
+ if inputs_embeds is not None:
1486
+ batch_size, sequence_length = inputs_embeds.shape
1487
+ device = inputs_embeds.device
1488
+ else:
1489
+ batch_size, sequence_length = input_ids.shape
1490
+ device = input_ids.device
1491
+
1492
+ dtype = self.lm_head.weight.dtype
1493
+ min_dtype = torch.finfo(dtype).min
1494
+
1495
+ attention_mask = _prepare_4d_causal_attention_mask_with_cache_position(
1496
+ attention_mask,
1497
+ sequence_length=sequence_length,
1498
+ target_length=past_key_values.get_max_length(),
1499
+ dtype=dtype,
1500
+ device=device,
1501
+ min_dtype=min_dtype,
1502
+ cache_position=cache_position,
1503
+ batch_size=batch_size,
1504
+ )
1505
+
1506
+ model_inputs.update(
1507
+ {
1508
+ "position_ids": position_ids,
1509
+ "cache_position": cache_position,
1510
+ "past_key_values": past_key_values,
1511
+ "use_cache": use_cache,
1512
+ "attention_mask": attention_mask,
1513
+ }
1514
+ )
1515
+ return model_inputs
1516
+
1517
+ @staticmethod
1518
+ def _reorder_cache(past_key_values, beam_idx):
1519
+ reordered_past = ()
1520
+ for layer_past in past_key_values:
1521
+ reordered_past += (
1522
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
1523
+ )
1524
+ return reordered_past
1525
+
1526
+
1527
+ @add_start_docstrings(
1528
+ """
1529
+ The EXAONE Model transformer with a sequence classification head on top (linear layer).
1530
+
1531
+ :class:`~transformers.ExaoneForSequenceClassification` uses the last token in order to do the classification, as
1532
+ other causal models (e.g. GPT-1) do.
1533
+
1534
+ Since it does classification on the last token, it requires to know the position of the last token. If a
1535
+ :obj:`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each
1536
+ row. If no :obj:`pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot
1537
+ guess the padding tokens when :obj:`inputs_embeds` are passed instead of :obj:`input_ids`, it does the same (take
1538
+ the last value in each row of the batch).
1539
+ """,
1540
+ EXAONE_START_DOCSTRING,
1541
+ )
1542
+ class ExaoneForSequenceClassification(ExaonePreTrainedModel):
1543
+ _keys_to_ignore_on_load_missing = ["lm_head.weight"]
1544
+ def __init__(self, config):
1545
+ super().__init__(config)
1546
+ self.num_labels = config.num_labels
1547
+ self.transformer = ExaoneModel(config)
1548
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1549
+
1550
+ # Initialize weights and apply final processing
1551
+ self.post_init()
1552
+
1553
+ @add_start_docstrings_to_model_forward(EXAONE_INPUTS_DOCSTRING)
1554
+ @add_code_sample_docstrings(
1555
+ checkpoint=_CHECKPOINT_FOR_DOC,
1556
+ output_type=SequenceClassifierOutputWithPast,
1557
+ config_class=_CONFIG_FOR_DOC,
1558
+ )
1559
+ def forward(
1560
+ self,
1561
+ input_ids: Optional[torch.Tensor] = None,
1562
+ attention_mask: Optional[torch.Tensor] = None,
1563
+ position_ids: Optional[torch.Tensor] = None,
1564
+ past_key_values: Optional[Cache] = None,
1565
+ inputs_embeds: Optional[torch.Tensor] = None,
1566
+ labels: Optional[torch.Tensor] = None,
1567
+ use_cache: Optional[bool] = None,
1568
+ output_attentions: Optional[bool] = None,
1569
+ output_hidden_states: Optional[bool] = None,
1570
+ return_dict: Optional[bool] = None,
1571
+ ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutputWithPast]:
1572
+ r"""
1573
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1574
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1575
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1576
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1577
+ """
1578
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1579
+
1580
+ transformer_outputs = self.transformer(
1581
+ input_ids,
1582
+ attention_mask=attention_mask,
1583
+ position_ids=position_ids,
1584
+ past_key_values=past_key_values,
1585
+ inputs_embeds=inputs_embeds,
1586
+ use_cache=use_cache,
1587
+ output_attentions=output_attentions,
1588
+ output_hidden_states=output_hidden_states,
1589
+ return_dict=return_dict,
1590
+ )
1591
+ hidden_states = transformer_outputs[0]
1592
+ logits = self.score(hidden_states)
1593
+
1594
+ if input_ids is not None:
1595
+ batch_size, sequence_length = input_ids.shape[:2]
1596
+ else:
1597
+ batch_size, sequence_length = inputs_embeds.shape[:2]
1598
+
1599
+ if self.config.pad_token_id is None and batch_size != 1:
1600
+ raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
1601
+ if self.config.pad_token_id is None:
1602
+ sequence_lengths = -1
1603
+ else:
1604
+ if input_ids is not None:
1605
+ # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
1606
+ sequence_lengths = torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1
1607
+ sequence_lengths = sequence_lengths % input_ids.shape[-1]
1608
+ sequence_lengths = sequence_lengths.to(logits.device)
1609
+ else:
1610
+ sequence_lengths = -1
1611
+ logger.warning(
1612
+ f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
1613
+ "unexpected if using padding tokens in conjunction with `inputs_embeds.`"
1614
+ )
1615
+
1616
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
1617
+
1618
+ loss = None
1619
+ if labels is not None:
1620
+ labels = labels.to(logits.device)
1621
+ if self.config.problem_type is None:
1622
+ if self.num_labels == 1:
1623
+ self.config.problem_type = "regression"
1624
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1625
+ self.config.problem_type = "single_label_classification"
1626
+ else:
1627
+ self.config.problem_type = "multi_label_classification"
1628
+
1629
+ if self.config.problem_type == "regression":
1630
+ loss_fct = MSELoss()
1631
+ if self.num_labels == 1:
1632
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1633
+ else:
1634
+ loss = loss_fct(pooled_logits, labels)
1635
+ elif self.config.problem_type == "single_label_classification":
1636
+ loss_fct = CrossEntropyLoss()
1637
+ loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
1638
+ elif self.config.problem_type == "multi_label_classification":
1639
+ loss_fct = BCEWithLogitsLoss()
1640
+ loss = loss_fct(pooled_logits, labels)
1641
+ if not return_dict:
1642
+ output = (pooled_logits,) + transformer_outputs[1:]
1643
+ return ((loss,) + output) if loss is not None else output
1644
+
1645
+ return SequenceClassifierOutputWithPast(
1646
+ loss=loss,
1647
+ logits=pooled_logits,
1648
+ past_key_values=transformer_outputs.past_key_values,
1649
+ hidden_states=transformer_outputs.hidden_states,
1650
+ attentions=transformer_outputs.attentions,
1651
+ )
1652
+
1653
+
1654
+ @add_start_docstrings(
1655
+ """
1656
+ The EXAONE Model transformer with a span classification head on top for extractive question-answering tasks like
1657
+ SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
1658
+ """,
1659
+ EXAONE_START_DOCSTRING,
1660
+ )
1661
+ class ExaoneForQuestionAnswering(ExaonePreTrainedModel):
1662
+ _keys_to_ignore_on_load_missing = ["lm_head.weight"]
1663
+
1664
+ def __init__(self, config):
1665
+ super().__init__(config)
1666
+ self.num_labels = config.num_labels
1667
+ self.transformer = ExaoneModel(config)
1668
+ self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
1669
+
1670
+ # Model parallel
1671
+ self.model_parallel = False
1672
+ self.device_map = None
1673
+
1674
+ # Initialize weights and apply final processing
1675
+ self.post_init()
1676
+
1677
+ def forward(
1678
+ self,
1679
+ input_ids: Optional[torch.LongTensor] = None,
1680
+ attention_mask: Optional[torch.FloatTensor] = None,
1681
+ position_ids: Optional[torch.LongTensor] = None,
1682
+ past_key_values: Optional[Cache] = None,
1683
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1684
+ start_positions: Optional[torch.LongTensor] = None,
1685
+ end_positions: Optional[torch.LongTensor] = None,
1686
+ output_attentions: Optional[bool] = None,
1687
+ output_hidden_states: Optional[bool] = None,
1688
+ return_dict: Optional[bool] = None,
1689
+ ) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]:
1690
+ r"""
1691
+ start_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
1692
+ Labels for position (index) of the start of the labelled span for computing the token classification loss.
1693
+ Positions are clamped to the length of the sequence (:obj:`sequence_length`). Position outside of the
1694
+ sequence are not taken into account for computing the loss.
1695
+ end_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
1696
+ Labels for position (index) of the end of the labelled span for computing the token classification loss.
1697
+ Positions are clamped to the length of the sequence (:obj:`sequence_length`). Position outside of the
1698
+ sequence are not taken into account for computing the loss.
1699
+ """
1700
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1701
+
1702
+ outputs = self.transformer(
1703
+ input_ids,
1704
+ attention_mask=attention_mask,
1705
+ position_ids=position_ids,
1706
+ past_key_values=past_key_values,
1707
+ inputs_embeds=inputs_embeds,
1708
+ output_attentions=output_attentions,
1709
+ output_hidden_states=output_hidden_states,
1710
+ return_dict=return_dict,
1711
+ )
1712
+
1713
+ sequence_output = outputs[0]
1714
+
1715
+ logits = self.qa_outputs(sequence_output)
1716
+ start_logits, end_logits = logits.split(1, dim=-1)
1717
+ start_logits = start_logits.squeeze(-1).contiguous()
1718
+ end_logits = end_logits.squeeze(-1).contiguous()
1719
+
1720
+ total_loss = None
1721
+ if start_positions is not None and end_positions is not None:
1722
+ # If we are on multi-GPU, split add a dimension
1723
+ if len(start_positions.size()) > 1:
1724
+ start_positions = start_positions.squeeze(-1).to(start_logits.device)
1725
+ if len(end_positions.size()) > 1:
1726
+ end_positions = end_positions.squeeze(-1).to(end_logits.device)
1727
+ # sometimes the start/end positions are outside our model inputs, we ignore these terms
1728
+ ignored_index = start_logits.size(1)
1729
+ start_positions = start_positions.clamp(0, ignored_index)
1730
+ end_positions = end_positions.clamp(0, ignored_index)
1731
+
1732
+ loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
1733
+ start_loss = loss_fct(start_logits, start_positions)
1734
+ end_loss = loss_fct(end_logits, end_positions)
1735
+ total_loss = (start_loss + end_loss) / 2
1736
+
1737
+ if not return_dict:
1738
+ output = (start_logits, end_logits) + outputs[2:]
1739
+ return ((total_loss,) + output) if total_loss is not None else output
1740
+
1741
+ return QuestionAnsweringModelOutput(
1742
+ loss=total_loss,
1743
+ start_logits=start_logits,
1744
+ end_logits=end_logits,
1745
+ hidden_states=outputs.hidden_states,
1746
+ attentions=outputs.attentions,
1747
+ )