pszemraj's picture
Update README.md
095f9c0
---
license: apache-2.0
base_model: BEE-spoke-data/smol_llama-220M-GQA
datasets:
- BEE-spoke-data/pypi_clean-deduped
- bigcode/the-stack-smol-xl
- EleutherAI/proof-pile-2
language:
- en
tags:
- python
- codegen
- markdown
- smol_llama
metrics:
- accuracy
inference:
parameters:
max_new_tokens: 64
min_new_tokens: 8
do_sample: true
epsilon_cutoff: 0.0008
temperature: 0.3
top_p: 0.9
repetition_penalty: 1.02
no_repeat_ngram_size: 8
renormalize_logits: true
widget:
- text: |
def add_numbers(a, b):
return
example_title: Add Numbers Function
- text: |
class Car:
def __init__(self, make, model):
self.make = make
self.model = model
def display_car(self):
example_title: Car Class
- text: |
import pandas as pd
data = {'Name': ['Tom', 'Nick', 'John'], 'Age': [20, 21, 19]}
df = pd.DataFrame(data).convert_dtypes()
# eda
example_title: Pandas DataFrame
- text: |
def factorial(n):
if n == 0:
return 1
else:
example_title: Factorial Function
- text: |
def fibonacci(n):
if n <= 0:
raise ValueError("Incorrect input")
elif n == 1:
return 0
elif n == 2:
return 1
else:
example_title: Fibonacci Function
- text: |
import matplotlib.pyplot as plt
import numpy as np
x = np.linspace(0, 10, 100)
# simple plot
example_title: Matplotlib Plot
- text: |
def reverse_string(s:str) -> str:
return
example_title: Reverse String Function
- text: |
def is_palindrome(word:str) -> bool:
return
example_title: Palindrome Function
- text: |
def bubble_sort(lst: list):
n = len(lst)
for i in range(n):
for j in range(0, n-i-1):
example_title: Bubble Sort Function
- text: |
def binary_search(arr, low, high, x):
if high >= low:
mid = (high + low) // 2
if arr[mid] == x:
return mid
elif arr[mid] > x:
example_title: Binary Search Function
pipeline_tag: text-generation
---
# BEE-spoke-data/beecoder-220M-python
This is `BEE-spoke-data/smol_llama-220M-GQA` fine-tuned for code generation on:
- filtered version of stack-smol-XL
- deduped version of 'algebraic stack' from proof-pile-2
- cleaned and deduped pypi (last dataset)
This model (and the base model) were both trained using ctx length 2048.
## examples
> Example script for inference testing: [here](https://gist.github.com/pszemraj/c7738f664a64b935a558974d23a7aa8c)
It has its limitations at 220M, but seems decent for single-line or docstring generation, and/or being used for speculative decoding for such purposes.
![image/png](https://cdn-uploads.huggingface.co/production/uploads/60bccec062080d33f875cd0c/bLrtpr7Vi_MPvtF7mozDN.png)
The screenshot is on CPU on a laptop.
---