metadata
tags:
- autotrain
- text-classification
language:
- en
widget:
- text: >-
A new model offers an explanation for how the Galilean satellites formed
around the solar system’s largest world. Konstantin Batygin did not set
out to solve one of the solar system’s most puzzling mysteries when he
went for a run up a hill in Nice, France. Dr. Batygin, a Caltech
researcher
datasets:
- AyoubChLin/autotrain-data-anymodel_bbc
- SetFit/bbc-news
co2_eq_emissions:
emissions: 2.359134715120443
license: apache-2.0
metrics:
- accuracy
pipeline_tag: text-classification
Model Trained Using AutoTrain
- Problem type: Multi-class Classification
- Model ID: 48900118383
- CO2 Emissions (in grams): 2.3591
Validation Metrics
- Loss: 0.116
- Accuracy: 0.978
- Macro F1: 0.978
- Micro F1: 0.978
- Weighted F1: 0.978
- Macro Precision: 0.978
- Micro Precision: 0.978
- Weighted Precision: 0.978
- Macro Recall: 0.978
- Micro Recall: 0.978
- Weighted Recall: 0.978
Usage
You can use cURL to access this model:
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/AyoubChLin/autotrain-anymodel_bbc-48900118383
Or Python API:
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("AyoubChLin/autotrain-anymodel_bbc-48900118383", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("AyoubChLin/autotrain-anymodel_bbc-48900118383", use_auth_token=True)
inputs = tokenizer("I love AutoTrain", return_tensors="pt")
outputs = model(**inputs)