roberta_gpt2_summarization_cnn_dailymail

This model is a fine-tuned version of on the cnn_dailymail dataset.

Model description

This model uses RoBerta encoder and GPT2 decoder and fine-tuned on the summarization task. It got Rouge scores as follows:

Rouge1= 35.886

Rouge2= 16.292

RougeL= 23.499

Intended uses & limitations

To use its API:

from transformers import RobertaTokenizerFast, GPT2Tokenizer, EncoderDecoderModel

model = EncoderDecoderModel.from_pretrained("Ayham/roberta_gpt2_summarization_cnn_dailymail")

input_tokenizer = RobertaTokenizerFast.from_pretrained('roberta-base')

output_tokenizer = GPT2Tokenizer.from_pretrained("gpt2")

article = """Your Input Text"""

input_ids = input_tokenizer(article, return_tensors="pt").input_ids

output_ids = model.generate(input_ids)

print(output_tokenizer.decode(output_ids[0], skip_special_tokens=True))

More information needed

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 2000
  • num_epochs: 3.0
  • mixed_precision_training: Native AMP

Training results

Framework versions

  • Transformers 4.12.0.dev0
  • Pytorch 1.10.0+cu111
  • Datasets 1.16.1
  • Tokenizers 0.10.3
Downloads last month
19
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train Ayham/roberta_gpt2_summarization_cnn_dailymail