Awal's picture
Upload PPO LunarLander-v2 trained agent
47d8dd7
raw
history blame
14.6 kB
{
"policy_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
"__module__": "stable_baselines3.common.policies",
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f5ec3a1fa70>",
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5ec3a1fb00>",
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5ec3a1fb90>",
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5ec3a1fc20>",
"_build": "<function ActorCriticPolicy._build at 0x7f5ec3a1fcb0>",
"forward": "<function ActorCriticPolicy.forward at 0x7f5ec3a1fd40>",
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5ec3a1fdd0>",
"_predict": "<function ActorCriticPolicy._predict at 0x7f5ec3a1fe60>",
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5ec3a1fef0>",
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5ec3a1ff80>",
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5ec3a24050>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc_data object at 0x7f5ec3a712a0>"
},
"verbose": 1,
"policy_kwargs": {},
"observation_space": {
":type:": "<class 'gym.spaces.box.Box'>",
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
"dtype": "float32",
"_shape": [
8
],
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
"high": "[inf inf inf inf inf inf inf inf]",
"bounded_below": "[False False False False False False False False]",
"bounded_above": "[False False False False False False False False]",
"_np_random": null
},
"action_space": {
":type:": "<class 'gym.spaces.discrete.Discrete'>",
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
"n": 4,
"_shape": [],
"dtype": "int64",
"_np_random": null
},
"n_envs": 16,
"num_timesteps": 2015232,
"_total_timesteps": 2000000,
"_num_timesteps_at_start": 0,
"seed": null,
"action_noise": null,
"start_time": 1651806060.710915,
"learning_rate": 0.0003,
"tensorboard_log": null,
"lr_schedule": {
":type:": "<class 'function'>",
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
},
"_last_obs": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGDtcL4rjJo/lgQmvvwb2b5GEsC+gHrUuwAAAAAAAAAAYIF6PpW2NT8fY4i9BWm9vuuiNz6meFW9AAAAAAAAAABNEgi+JxNFP5yFDr0VGca+H0stvqa19zwAAAAAAAAAAJOfTL4aOTY/tc0xPn37477OJ669fuSLPQAAAAAAAAAAmo8rPOwv+buIOA49loyDPJmSVL067lw9AACAPwAAgD+ayjK9SI2fuh6oarzFb5++afHtvHLbGT0AAIA/AAAAAGAKMz4QubY+rnKfvv6xh74ZEv+7TghGvQAAAAAAAAAAM4AIPZfEij81uuw8MSTmvk+hvjyQvsU8AAAAAAAAAACteQK+IOSyPlMxkj50oMK+yBWAPdAt0zwAAAAAAAAAAAOUij5zJ1U/jFaePD1W7L7gOas+Bg/qvQAAAAAAAAAAAES4vfr5Xj/4Jt69L3K0vue7y73CAdi8AAAAAAAAAAAtLx2+X/s3P9g5rT6zsfS+TL6bPNglGT4AAAAAAAAAADNGmzxmgZ0/YzlpPVnr775iLA88ezdiPQAAAAAAAAAAzUWsvN+Iqz/iOpa+G5vuvq21R7yo+Nu9AAAAAAAAAADNx++8KZx0uqBmmD0eQl82pUjlOhAPWTUAAAAAAACAP+AnpD6b1T8/vsq8vSZO076v+Yo+/mkSvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
},
"_last_episode_starts": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
},
"_last_original_obs": null,
"_episode_num": 0,
"use_sde": false,
"sde_sample_freq": -1,
"_current_progress_remaining": -0.007616000000000067,
"ep_info_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVOBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI+aI9XohgcECUhpRSlIwBbJRL+IwBdJRHQLQYBrdFfAt1fZQoaAZoCWgPQwjnNAu0uw1zQJSGlFKUaBVL6mgWR0C0GBRfF72MdX2UKGgGaAloD0MI965BXzq1cUCUhpRSlGgVS/9oFkdAtBgjmW+oL3V9lChoBmgJaA9DCNDyPLg730BAlIaUUpRoFUvEaBZHQLQYJHqNZNh1fZQoaAZoCWgPQwgJNq5/1/xwQJSGlFKUaBVNBQFoFkdAtBgtJZntfHV9lChoBmgJaA9DCIvEBDW8d3FAlIaUUpRoFUv+aBZHQLQYLexfOUt1fZQoaAZoCWgPQwhR3Vz8rZFxQJSGlFKUaBVL42gWR0C0GHyqhlDndX2UKGgGaAloD0MIIEWduUffc0CUhpRSlGgVS/VoFkdAtBjOHsTnJXV9lChoBmgJaA9DCHzT9NmBFXBAlIaUUpRoFUv2aBZHQLQY8mYBvJl1fZQoaAZoCWgPQwivCWmNQbNyQJSGlFKUaBVL3GgWR0C0GO/114gSdX2UKGgGaAloD0MIAaPLm4OSc0CUhpRSlGgVS/JoFkdAtBkGIhyKenV9lChoBmgJaA9DCCB+/ntwH3JAlIaUUpRoFUvkaBZHQLQZFYYR/Vl1fZQoaAZoCWgPQwiM2ZJVUZVyQJSGlFKUaBVNFQFoFkdAtBlIz3yqdnV9lChoBmgJaA9DCDGx+bg2U3FAlIaUUpRoFUv9aBZHQLQZRVN5+ph1fZQoaAZoCWgPQwjtKw/SE21xQJSGlFKUaBVL4WgWR0C0GVzHn2ZidX2UKGgGaAloD0MI/p5Yp4osckCUhpRSlGgVS/VoFkdAtBlmYXwb2nV9lChoBmgJaA9DCNY1Wg50b29AlIaUUpRoFUvfaBZHQLQZd4Bmwq11fZQoaAZoCWgPQwjVz5uKVMFwQJSGlFKUaBVL3GgWR0C0GXSNsFdLdX2UKGgGaAloD0MIiZl9HuNJckCUhpRSlGgVTQABaBZHQLQZhfeDWbx1fZQoaAZoCWgPQwjoLR7esxhwQJSGlFKUaBVL9WgWR0C0GYi53C9AdX2UKGgGaAloD0MI0PBmDR64cUCUhpRSlGgVS/doFkdAtBmj6CUX53V9lChoBmgJaA9DCBke+1nswXFAlIaUUpRoFU0OAWgWR0C0GcRTS9dvdX2UKGgGaAloD0MIDKzj+KH5bkCUhpRSlGgVS9toFkdAtBnX9Nvfj3V9lChoBmgJaA9DCOxMofOaunFAlIaUUpRoFUvdaBZHQLQaJKMNtqJ1fZQoaAZoCWgPQwj1S8RbJz5yQJSGlFKUaBVL+GgWR0C0GnlN1yNodX2UKGgGaAloD0MIMUCiCRQNckCUhpRSlGgVS/VoFkdAtBpyIZZSvXV9lChoBmgJaA9DCC7/If328XBAlIaUUpRoFUvuaBZHQLQafOktVaR1fZQoaAZoCWgPQwjDt7BuvPpyQJSGlFKUaBVL7WgWR0C0GovzOHFhdX2UKGgGaAloD0MI3bJD/EOHbkCUhpRSlGgVS9toFkdAtBqeIeo1k3V9lChoBmgJaA9DCJ5CrtSzym5AlIaUUpRoFUvcaBZHQLQam8G9pRJ1fZQoaAZoCWgPQwgnaf6YlvdwQJSGlFKUaBVL4mgWR0C0GsAhfShKdX2UKGgGaAloD0MIj46rkd1UcECUhpRSlGgVS/JoFkdAtBrSQNkOJHV9lChoBmgJaA9DCLSrkPITFXJAlIaUUpRoFUvqaBZHQLQa37Pppvh1fZQoaAZoCWgPQwjswaT4OCJyQJSGlFKUaBVL4mgWR0C0GuS4SYgJdX2UKGgGaAloD0MIIqev52uxcECUhpRSlGgVTQABaBZHQLQd4974SHx1fZQoaAZoCWgPQwh8mShCqnJxQJSGlFKUaBVL9mgWR0C0HebOqvNedX2UKGgGaAloD0MIHCYapGDTckCUhpRSlGgVTRIBaBZHQLQeLrVOKwZ1fZQoaAZoCWgPQwhl3xXBvxtyQJSGlFKUaBVNAwFoFkdAtB46qsEJSnV9lChoBmgJaA9DCNHMk2uKdnFAlIaUUpRoFU0LAWgWR0C0HllE3KjjdX2UKGgGaAloD0MIGejaF5CKcECUhpRSlGgVTQIBaBZHQLQepA9mpVF1fZQoaAZoCWgPQwgOFeP8TchxQJSGlFKUaBVL3mgWR0C0HrKDsdDIdX2UKGgGaAloD0MIYTYBhmVlcUCUhpRSlGgVS/poFkdAtB72lP8AJnV9lChoBmgJaA9DCBRf7ShOkm9AlIaUUpRoFUvnaBZHQLQe9TtsvZh1fZQoaAZoCWgPQwg2Bp0QutFvQJSGlFKUaBVNBwFoFkdAtB8f9LpRoHV9lChoBmgJaA9DCE6Zm2/EpnFAlIaUUpRoFUvoaBZHQLQfKXtBv751fZQoaAZoCWgPQwj/z2G+vIRwQJSGlFKUaBVL62gWR0C0H0HnyNGWdX2UKGgGaAloD0MIYHXkSOf4cUCUhpRSlGgVTRsBaBZHQLQfWncclw91fZQoaAZoCWgPQwjX9nZL8g1xQJSGlFKUaBVNOAFoFkdAtB9pJjDsMXV9lChoBmgJaA9DCOrpI/AHkG5AlIaUUpRoFUv7aBZHQLQfbhMajvd1fZQoaAZoCWgPQwjvqDEhJsBwQJSGlFKUaBVL4WgWR0C0H2jhLoOhdX2UKGgGaAloD0MIPzvgumLKcUCUhpRSlGgVTQUBaBZHQLQfgjABT4t1fZQoaAZoCWgPQwjpmPOMfVBuQJSGlFKUaBVNEgFoFkdAtB+rWoWHlHV9lChoBmgJaA9DCKQzMPIyIHJAlIaUUpRoFUvsaBZHQLQfv/tIClt1fZQoaAZoCWgPQwja5Vsf1tdsQJSGlFKUaBVL6WgWR0C0H8YVM23sdX2UKGgGaAloD0MI31FjQoxpcUCUhpRSlGgVS/doFkdAtB/3zpX6qXV9lChoBmgJaA9DCNqqJLIPlnJAlIaUUpRoFUv8aBZHQLQgSB+Wnj11fZQoaAZoCWgPQwh3ai43mP5wQJSGlFKUaBVL5mgWR0C0IGrU9ZA6dX2UKGgGaAloD0MIGeQuwpSpcUCUhpRSlGgVS+VoFkdAtCCY7eVLSXV9lChoBmgJaA9DCGO0jqpmTHFAlIaUUpRoFUvsaBZHQLQgnQN0/4Z1fZQoaAZoCWgPQwjVWS2wx0JvQJSGlFKUaBVL2mgWR0C0ILPZRKpUdX2UKGgGaAloD0MIFt9Q+CywcECUhpRSlGgVS9VoFkdAtCC4/3WWhXV9lChoBmgJaA9DCIielEkNEnFAlIaUUpRoFU0sAWgWR0C0IOTuSfUXdX2UKGgGaAloD0MIzSGphRKgc0CUhpRSlGgVS/FoFkdAtCDrI+4b0nV9lChoBmgJaA9DCGqlEMgl/HJAlIaUUpRoFU0GAWgWR0C0IOWmLtNSdX2UKGgGaAloD0MIoKaWrTU6cUCUhpRSlGgVS+toFkdAtCD5VlwtKHV9lChoBmgJaA9DCDEG1nE8YHJAlIaUUpRoFU0GAWgWR0C0IQZH3DekdX2UKGgGaAloD0MIbqRskbQ9ckCUhpRSlGgVS+hoFkdAtCEzoV2zOXV9lChoBmgJaA9DCJDdBUpKCXFAlIaUUpRoFU0BAWgWR0C0IUQwsXizdX2UKGgGaAloD0MIOWHCaFZSckCUhpRSlGgVTZ8BaBZHQLQhXcABDG91fZQoaAZoCWgPQwioqWVrPXhxQJSGlFKUaBVNGgFoFkdAtCGEddVvM3V9lChoBmgJaA9DCHXniefsSXBAlIaUUpRoFUv8aBZHQLQhi+Sr5qN1fZQoaAZoCWgPQwjZeLDFbtBwQJSGlFKUaBVL8GgWR0C0IeWdd3SsdX2UKGgGaAloD0MIiV+xhktrcUCUhpRSlGgVTQcBaBZHQLQh7gv114h1fZQoaAZoCWgPQwgVjiCVIihwQJSGlFKUaBVL32gWR0C0IffXoTwldX2UKGgGaAloD0MIByl4CvlqcUCUhpRSlGgVS+toFkdAtCIpUIcBEXV9lChoBmgJaA9DCNY6cTleEHBAlIaUUpRoFUvwaBZHQLQiLGcFyJd1fZQoaAZoCWgPQwiO5zOg3rpxQJSGlFKUaBVL5mgWR0C0IlJwbVBldX2UKGgGaAloD0MI4WJFDWbncUCUhpRSlGgVTRMBaBZHQLQiTmixmkF1fZQoaAZoCWgPQwgB3gIJSiVwQJSGlFKUaBVL5WgWR0C0Il0Qsf7rdX2UKGgGaAloD0MIoN6Mmm9LcECUhpRSlGgVS/loFkdAtCJpZq20A3V9lChoBmgJaA9DCP7V477VKXFAlIaUUpRoFUv6aBZHQLQiakupS751fZQoaAZoCWgPQwgZkSi0bBBzQJSGlFKUaBVL1mgWR0C0In4//vORdX2UKGgGaAloD0MI0Jm0qbrub0CUhpRSlGgVS9doFkdAtCKNhJAdGXV9lChoBmgJaA9DCHaopiQr0XJAlIaUUpRoFU0HAWgWR0C0IpSQHRkVdX2UKGgGaAloD0MICTTY1Hn3bECUhpRSlGgVS+toFkdAtCK7gzguRXV9lChoBmgJaA9DCMvz4O6snXNAlIaUUpRoFUvoaBZHQLQi4i2lVLl1fZQoaAZoCWgPQwj0cALTafxtQJSGlFKUaBVL+mgWR0C0IvWGATZhdX2UKGgGaAloD0MIDwu1prmicUCUhpRSlGgVS+xoFkdAtCNGHrQgLnV9lChoBmgJaA9DCKcgPxs5g29AlIaUUpRoFU0NAWgWR0C0I3plJ6IFdX2UKGgGaAloD0MI7KF9rCDecUCUhpRSlGgVTQcBaBZHQLQjf4axX4l1fZQoaAZoCWgPQwhtcvik0zpwQJSGlFKUaBVL+WgWR0C0I6AeV9ncdX2UKGgGaAloD0MImaCGb+GZbECUhpRSlGgVS9poFkdAtCOuhYeT3nV9lChoBmgJaA9DCJQvaCGBMG5AlIaUUpRoFUvjaBZHQLQjsaXa8Hx1fZQoaAZoCWgPQwj+8smKoSZzQJSGlFKUaBVL/GgWR0C0I89PYWcjdX2UKGgGaAloD0MIur2kMZp6ckCUhpRSlGgVTR0BaBZHQLQj23z+WGB1fZQoaAZoCWgPQwi4HRoWo81uQJSGlFKUaBVNAwFoFkdAtCPXFwT/Q3V9lChoBmgJaA9DCBh7L77oDnFAlIaUUpRoFUvjaBZHQLQj26Oo5xR1fZQoaAZoCWgPQwig/UgRGV1yQJSGlFKUaBVL/mgWR0C0I+qJVKf4dX2UKGgGaAloD0MI+rmhKfvNcUCUhpRSlGgVS+9oFkdAtCP+mvW6LHV9lChoBmgJaA9DCKfmcoMhYXFAlIaUUpRoFUviaBZHQLQkH60pmVZ1ZS4="
},
"ep_success_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
},
"_n_updates": 616,
"n_steps": 1024,
"gamma": 0.999,
"gae_lambda": 0.98,
"ent_coef": 0.01,
"vf_coef": 0.5,
"max_grad_norm": 0.5,
"batch_size": 64,
"n_epochs": 4,
"clip_range": {
":type:": "<class 'function'>",
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
},
"clip_range_vf": null,
"normalize_advantage": true,
"target_kl": null
}