Upload PPO LunarLander-v2 trained agent
Browse files- .gitattributes +1 -0
- Awal-LunarLander-v2.zip +3 -0
- Awal-LunarLander-v2/_stable_baselines3_version +1 -0
- Awal-LunarLander-v2/data +94 -0
- Awal-LunarLander-v2/policy.optimizer.pth +3 -0
- Awal-LunarLander-v2/policy.pth +3 -0
- Awal-LunarLander-v2/pytorch_variables.pth +3 -0
- Awal-LunarLander-v2/system_info.txt +7 -0
- README.md +28 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
Awal-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c8659b5df79c0326e49a6817a2cb1253a2459c6598b140c2fac92f26784f2296
|
3 |
+
size 143634
|
Awal-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
Awal-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f5ec3a1fa70>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5ec3a1fb00>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5ec3a1fb90>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5ec3a1fc20>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f5ec3a1fcb0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f5ec3a1fd40>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5ec3a1fdd0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f5ec3a1fe60>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5ec3a1fef0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5ec3a1ff80>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5ec3a24050>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f5ec3a712a0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 2015232,
|
46 |
+
"_total_timesteps": 2000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1651806060.710915,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGDtcL4rjJo/lgQmvvwb2b5GEsC+gHrUuwAAAAAAAAAAYIF6PpW2NT8fY4i9BWm9vuuiNz6meFW9AAAAAAAAAABNEgi+JxNFP5yFDr0VGca+H0stvqa19zwAAAAAAAAAAJOfTL4aOTY/tc0xPn37477OJ669fuSLPQAAAAAAAAAAmo8rPOwv+buIOA49loyDPJmSVL067lw9AACAPwAAgD+ayjK9SI2fuh6oarzFb5++afHtvHLbGT0AAIA/AAAAAGAKMz4QubY+rnKfvv6xh74ZEv+7TghGvQAAAAAAAAAAM4AIPZfEij81uuw8MSTmvk+hvjyQvsU8AAAAAAAAAACteQK+IOSyPlMxkj50oMK+yBWAPdAt0zwAAAAAAAAAAAOUij5zJ1U/jFaePD1W7L7gOas+Bg/qvQAAAAAAAAAAAES4vfr5Xj/4Jt69L3K0vue7y73CAdi8AAAAAAAAAAAtLx2+X/s3P9g5rT6zsfS+TL6bPNglGT4AAAAAAAAAADNGmzxmgZ0/YzlpPVnr775iLA88ezdiPQAAAAAAAAAAzUWsvN+Iqz/iOpa+G5vuvq21R7yo+Nu9AAAAAAAAAADNx++8KZx0uqBmmD0eQl82pUjlOhAPWTUAAAAAAACAP+AnpD6b1T8/vsq8vSZO076v+Yo+/mkSvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.007616000000000067,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVOBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI+aI9XohgcECUhpRSlIwBbJRL+IwBdJRHQLQYBrdFfAt1fZQoaAZoCWgPQwjnNAu0uw1zQJSGlFKUaBVL6mgWR0C0GBRfF72MdX2UKGgGaAloD0MI965BXzq1cUCUhpRSlGgVS/9oFkdAtBgjmW+oL3V9lChoBmgJaA9DCNDyPLg730BAlIaUUpRoFUvEaBZHQLQYJHqNZNh1fZQoaAZoCWgPQwgJNq5/1/xwQJSGlFKUaBVNBQFoFkdAtBgtJZntfHV9lChoBmgJaA9DCIvEBDW8d3FAlIaUUpRoFUv+aBZHQLQYLexfOUt1fZQoaAZoCWgPQwhR3Vz8rZFxQJSGlFKUaBVL42gWR0C0GHyqhlDndX2UKGgGaAloD0MIIEWduUffc0CUhpRSlGgVS/VoFkdAtBjOHsTnJXV9lChoBmgJaA9DCHzT9NmBFXBAlIaUUpRoFUv2aBZHQLQY8mYBvJl1fZQoaAZoCWgPQwivCWmNQbNyQJSGlFKUaBVL3GgWR0C0GO/114gSdX2UKGgGaAloD0MIAaPLm4OSc0CUhpRSlGgVS/JoFkdAtBkGIhyKenV9lChoBmgJaA9DCCB+/ntwH3JAlIaUUpRoFUvkaBZHQLQZFYYR/Vl1fZQoaAZoCWgPQwiM2ZJVUZVyQJSGlFKUaBVNFQFoFkdAtBlIz3yqdnV9lChoBmgJaA9DCDGx+bg2U3FAlIaUUpRoFUv9aBZHQLQZRVN5+ph1fZQoaAZoCWgPQwjtKw/SE21xQJSGlFKUaBVL4WgWR0C0GVzHn2ZidX2UKGgGaAloD0MI/p5Yp4osckCUhpRSlGgVS/VoFkdAtBlmYXwb2nV9lChoBmgJaA9DCNY1Wg50b29AlIaUUpRoFUvfaBZHQLQZd4Bmwq11fZQoaAZoCWgPQwjVz5uKVMFwQJSGlFKUaBVL3GgWR0C0GXSNsFdLdX2UKGgGaAloD0MIiZl9HuNJckCUhpRSlGgVTQABaBZHQLQZhfeDWbx1fZQoaAZoCWgPQwjoLR7esxhwQJSGlFKUaBVL9WgWR0C0GYi53C9AdX2UKGgGaAloD0MI0PBmDR64cUCUhpRSlGgVS/doFkdAtBmj6CUX53V9lChoBmgJaA9DCBke+1nswXFAlIaUUpRoFU0OAWgWR0C0GcRTS9dvdX2UKGgGaAloD0MIDKzj+KH5bkCUhpRSlGgVS9toFkdAtBnX9Nvfj3V9lChoBmgJaA9DCOxMofOaunFAlIaUUpRoFUvdaBZHQLQaJKMNtqJ1fZQoaAZoCWgPQwj1S8RbJz5yQJSGlFKUaBVL+GgWR0C0GnlN1yNodX2UKGgGaAloD0MIMUCiCRQNckCUhpRSlGgVS/VoFkdAtBpyIZZSvXV9lChoBmgJaA9DCC7/If328XBAlIaUUpRoFUvuaBZHQLQafOktVaR1fZQoaAZoCWgPQwjDt7BuvPpyQJSGlFKUaBVL7WgWR0C0GovzOHFhdX2UKGgGaAloD0MI3bJD/EOHbkCUhpRSlGgVS9toFkdAtBqeIeo1k3V9lChoBmgJaA9DCJ5CrtSzym5AlIaUUpRoFUvcaBZHQLQam8G9pRJ1fZQoaAZoCWgPQwgnaf6YlvdwQJSGlFKUaBVL4mgWR0C0GsAhfShKdX2UKGgGaAloD0MIj46rkd1UcECUhpRSlGgVS/JoFkdAtBrSQNkOJHV9lChoBmgJaA9DCLSrkPITFXJAlIaUUpRoFUvqaBZHQLQa37Pppvh1fZQoaAZoCWgPQwjswaT4OCJyQJSGlFKUaBVL4mgWR0C0GuS4SYgJdX2UKGgGaAloD0MIIqev52uxcECUhpRSlGgVTQABaBZHQLQd4974SHx1fZQoaAZoCWgPQwh8mShCqnJxQJSGlFKUaBVL9mgWR0C0HebOqvNedX2UKGgGaAloD0MIHCYapGDTckCUhpRSlGgVTRIBaBZHQLQeLrVOKwZ1fZQoaAZoCWgPQwhl3xXBvxtyQJSGlFKUaBVNAwFoFkdAtB46qsEJSnV9lChoBmgJaA9DCNHMk2uKdnFAlIaUUpRoFU0LAWgWR0C0HllE3KjjdX2UKGgGaAloD0MIGejaF5CKcECUhpRSlGgVTQIBaBZHQLQepA9mpVF1fZQoaAZoCWgPQwgOFeP8TchxQJSGlFKUaBVL3mgWR0C0HrKDsdDIdX2UKGgGaAloD0MIYTYBhmVlcUCUhpRSlGgVS/poFkdAtB72lP8AJnV9lChoBmgJaA9DCBRf7ShOkm9AlIaUUpRoFUvnaBZHQLQe9TtsvZh1fZQoaAZoCWgPQwg2Bp0QutFvQJSGlFKUaBVNBwFoFkdAtB8f9LpRoHV9lChoBmgJaA9DCE6Zm2/EpnFAlIaUUpRoFUvoaBZHQLQfKXtBv751fZQoaAZoCWgPQwj/z2G+vIRwQJSGlFKUaBVL62gWR0C0H0HnyNGWdX2UKGgGaAloD0MIYHXkSOf4cUCUhpRSlGgVTRsBaBZHQLQfWncclw91fZQoaAZoCWgPQwjX9nZL8g1xQJSGlFKUaBVNOAFoFkdAtB9pJjDsMXV9lChoBmgJaA9DCOrpI/AHkG5AlIaUUpRoFUv7aBZHQLQfbhMajvd1fZQoaAZoCWgPQwjvqDEhJsBwQJSGlFKUaBVL4WgWR0C0H2jhLoOhdX2UKGgGaAloD0MIPzvgumLKcUCUhpRSlGgVTQUBaBZHQLQfgjABT4t1fZQoaAZoCWgPQwjpmPOMfVBuQJSGlFKUaBVNEgFoFkdAtB+rWoWHlHV9lChoBmgJaA9DCKQzMPIyIHJAlIaUUpRoFUvsaBZHQLQfv/tIClt1fZQoaAZoCWgPQwja5Vsf1tdsQJSGlFKUaBVL6WgWR0C0H8YVM23sdX2UKGgGaAloD0MI31FjQoxpcUCUhpRSlGgVS/doFkdAtB/3zpX6qXV9lChoBmgJaA9DCNqqJLIPlnJAlIaUUpRoFUv8aBZHQLQgSB+Wnj11fZQoaAZoCWgPQwh3ai43mP5wQJSGlFKUaBVL5mgWR0C0IGrU9ZA6dX2UKGgGaAloD0MIGeQuwpSpcUCUhpRSlGgVS+VoFkdAtCCY7eVLSXV9lChoBmgJaA9DCGO0jqpmTHFAlIaUUpRoFUvsaBZHQLQgnQN0/4Z1fZQoaAZoCWgPQwjVWS2wx0JvQJSGlFKUaBVL2mgWR0C0ILPZRKpUdX2UKGgGaAloD0MIFt9Q+CywcECUhpRSlGgVS9VoFkdAtCC4/3WWhXV9lChoBmgJaA9DCIielEkNEnFAlIaUUpRoFU0sAWgWR0C0IOTuSfUXdX2UKGgGaAloD0MIzSGphRKgc0CUhpRSlGgVS/FoFkdAtCDrI+4b0nV9lChoBmgJaA9DCGqlEMgl/HJAlIaUUpRoFU0GAWgWR0C0IOWmLtNSdX2UKGgGaAloD0MIoKaWrTU6cUCUhpRSlGgVS+toFkdAtCD5VlwtKHV9lChoBmgJaA9DCDEG1nE8YHJAlIaUUpRoFU0GAWgWR0C0IQZH3DekdX2UKGgGaAloD0MIbqRskbQ9ckCUhpRSlGgVS+hoFkdAtCEzoV2zOXV9lChoBmgJaA9DCJDdBUpKCXFAlIaUUpRoFU0BAWgWR0C0IUQwsXizdX2UKGgGaAloD0MIOWHCaFZSckCUhpRSlGgVTZ8BaBZHQLQhXcABDG91fZQoaAZoCWgPQwioqWVrPXhxQJSGlFKUaBVNGgFoFkdAtCGEddVvM3V9lChoBmgJaA9DCHXniefsSXBAlIaUUpRoFUv8aBZHQLQhi+Sr5qN1fZQoaAZoCWgPQwjZeLDFbtBwQJSGlFKUaBVL8GgWR0C0IeWdd3SsdX2UKGgGaAloD0MIiV+xhktrcUCUhpRSlGgVTQcBaBZHQLQh7gv114h1fZQoaAZoCWgPQwgVjiCVIihwQJSGlFKUaBVL32gWR0C0IffXoTwldX2UKGgGaAloD0MIByl4CvlqcUCUhpRSlGgVS+toFkdAtCIpUIcBEXV9lChoBmgJaA9DCNY6cTleEHBAlIaUUpRoFUvwaBZHQLQiLGcFyJd1fZQoaAZoCWgPQwiO5zOg3rpxQJSGlFKUaBVL5mgWR0C0IlJwbVBldX2UKGgGaAloD0MI4WJFDWbncUCUhpRSlGgVTRMBaBZHQLQiTmixmkF1fZQoaAZoCWgPQwgB3gIJSiVwQJSGlFKUaBVL5WgWR0C0Il0Qsf7rdX2UKGgGaAloD0MIoN6Mmm9LcECUhpRSlGgVS/loFkdAtCJpZq20A3V9lChoBmgJaA9DCP7V477VKXFAlIaUUpRoFUv6aBZHQLQiakupS751fZQoaAZoCWgPQwgZkSi0bBBzQJSGlFKUaBVL1mgWR0C0In4//vORdX2UKGgGaAloD0MI0Jm0qbrub0CUhpRSlGgVS9doFkdAtCKNhJAdGXV9lChoBmgJaA9DCHaopiQr0XJAlIaUUpRoFU0HAWgWR0C0IpSQHRkVdX2UKGgGaAloD0MICTTY1Hn3bECUhpRSlGgVS+toFkdAtCK7gzguRXV9lChoBmgJaA9DCMvz4O6snXNAlIaUUpRoFUvoaBZHQLQi4i2lVLl1fZQoaAZoCWgPQwj0cALTafxtQJSGlFKUaBVL+mgWR0C0IvWGATZhdX2UKGgGaAloD0MIDwu1prmicUCUhpRSlGgVS+xoFkdAtCNGHrQgLnV9lChoBmgJaA9DCKcgPxs5g29AlIaUUpRoFU0NAWgWR0C0I3plJ6IFdX2UKGgGaAloD0MI7KF9rCDecUCUhpRSlGgVTQcBaBZHQLQjf4axX4l1fZQoaAZoCWgPQwhtcvik0zpwQJSGlFKUaBVL+WgWR0C0I6AeV9ncdX2UKGgGaAloD0MImaCGb+GZbECUhpRSlGgVS9poFkdAtCOuhYeT3nV9lChoBmgJaA9DCJQvaCGBMG5AlIaUUpRoFUvjaBZHQLQjsaXa8Hx1fZQoaAZoCWgPQwj+8smKoSZzQJSGlFKUaBVL/GgWR0C0I89PYWcjdX2UKGgGaAloD0MIur2kMZp6ckCUhpRSlGgVTR0BaBZHQLQj23z+WGB1fZQoaAZoCWgPQwi4HRoWo81uQJSGlFKUaBVNAwFoFkdAtCPXFwT/Q3V9lChoBmgJaA9DCBh7L77oDnFAlIaUUpRoFUvjaBZHQLQj26Oo5xR1fZQoaAZoCWgPQwig/UgRGV1yQJSGlFKUaBVL/mgWR0C0I+qJVKf4dX2UKGgGaAloD0MI+rmhKfvNcUCUhpRSlGgVS+9oFkdAtCP+mvW6LHV9lChoBmgJaA9DCKfmcoMhYXFAlIaUUpRoFUviaBZHQLQkH60pmVZ1ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 616,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
Awal-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:258bf20e171181ad4d520b4be5a4ada1f219accc6c882fac26f973798d12a3f2
|
3 |
+
size 84637
|
Awal-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a9e14890d55c69de198b3f8ed043a5374a606cd2bdc64c36f40c641f283317ce
|
3 |
+
size 43073
|
Awal-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
Awal-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: False
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 277.15 +/- 21.48
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f5ec3a1fa70>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5ec3a1fb00>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5ec3a1fb90>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5ec3a1fc20>", "_build": "<function ActorCriticPolicy._build at 0x7f5ec3a1fcb0>", "forward": "<function ActorCriticPolicy.forward at 0x7f5ec3a1fd40>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5ec3a1fdd0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f5ec3a1fe60>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5ec3a1fef0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5ec3a1ff80>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5ec3a24050>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f5ec3a712a0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651806060.710915, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGDtcL4rjJo/lgQmvvwb2b5GEsC+gHrUuwAAAAAAAAAAYIF6PpW2NT8fY4i9BWm9vuuiNz6meFW9AAAAAAAAAABNEgi+JxNFP5yFDr0VGca+H0stvqa19zwAAAAAAAAAAJOfTL4aOTY/tc0xPn37477OJ669fuSLPQAAAAAAAAAAmo8rPOwv+buIOA49loyDPJmSVL067lw9AACAPwAAgD+ayjK9SI2fuh6oarzFb5++afHtvHLbGT0AAIA/AAAAAGAKMz4QubY+rnKfvv6xh74ZEv+7TghGvQAAAAAAAAAAM4AIPZfEij81uuw8MSTmvk+hvjyQvsU8AAAAAAAAAACteQK+IOSyPlMxkj50oMK+yBWAPdAt0zwAAAAAAAAAAAOUij5zJ1U/jFaePD1W7L7gOas+Bg/qvQAAAAAAAAAAAES4vfr5Xj/4Jt69L3K0vue7y73CAdi8AAAAAAAAAAAtLx2+X/s3P9g5rT6zsfS+TL6bPNglGT4AAAAAAAAAADNGmzxmgZ0/YzlpPVnr775iLA88ezdiPQAAAAAAAAAAzUWsvN+Iqz/iOpa+G5vuvq21R7yo+Nu9AAAAAAAAAADNx++8KZx0uqBmmD0eQl82pUjlOhAPWTUAAAAAAACAP+AnpD6b1T8/vsq8vSZO076v+Yo+/mkSvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI+aI9XohgcECUhpRSlIwBbJRL+IwBdJRHQLQYBrdFfAt1fZQoaAZoCWgPQwjnNAu0uw1zQJSGlFKUaBVL6mgWR0C0GBRfF72MdX2UKGgGaAloD0MI965BXzq1cUCUhpRSlGgVS/9oFkdAtBgjmW+oL3V9lChoBmgJaA9DCNDyPLg730BAlIaUUpRoFUvEaBZHQLQYJHqNZNh1fZQoaAZoCWgPQwgJNq5/1/xwQJSGlFKUaBVNBQFoFkdAtBgtJZntfHV9lChoBmgJaA9DCIvEBDW8d3FAlIaUUpRoFUv+aBZHQLQYLexfOUt1fZQoaAZoCWgPQwhR3Vz8rZFxQJSGlFKUaBVL42gWR0C0GHyqhlDndX2UKGgGaAloD0MIIEWduUffc0CUhpRSlGgVS/VoFkdAtBjOHsTnJXV9lChoBmgJaA9DCHzT9NmBFXBAlIaUUpRoFUv2aBZHQLQY8mYBvJl1fZQoaAZoCWgPQwivCWmNQbNyQJSGlFKUaBVL3GgWR0C0GO/114gSdX2UKGgGaAloD0MIAaPLm4OSc0CUhpRSlGgVS/JoFkdAtBkGIhyKenV9lChoBmgJaA9DCCB+/ntwH3JAlIaUUpRoFUvkaBZHQLQZFYYR/Vl1fZQoaAZoCWgPQwiM2ZJVUZVyQJSGlFKUaBVNFQFoFkdAtBlIz3yqdnV9lChoBmgJaA9DCDGx+bg2U3FAlIaUUpRoFUv9aBZHQLQZRVN5+ph1fZQoaAZoCWgPQwjtKw/SE21xQJSGlFKUaBVL4WgWR0C0GVzHn2ZidX2UKGgGaAloD0MI/p5Yp4osckCUhpRSlGgVS/VoFkdAtBlmYXwb2nV9lChoBmgJaA9DCNY1Wg50b29AlIaUUpRoFUvfaBZHQLQZd4Bmwq11fZQoaAZoCWgPQwjVz5uKVMFwQJSGlFKUaBVL3GgWR0C0GXSNsFdLdX2UKGgGaAloD0MIiZl9HuNJckCUhpRSlGgVTQABaBZHQLQZhfeDWbx1fZQoaAZoCWgPQwjoLR7esxhwQJSGlFKUaBVL9WgWR0C0GYi53C9AdX2UKGgGaAloD0MI0PBmDR64cUCUhpRSlGgVS/doFkdAtBmj6CUX53V9lChoBmgJaA9DCBke+1nswXFAlIaUUpRoFU0OAWgWR0C0GcRTS9dvdX2UKGgGaAloD0MIDKzj+KH5bkCUhpRSlGgVS9toFkdAtBnX9Nvfj3V9lChoBmgJaA9DCOxMofOaunFAlIaUUpRoFUvdaBZHQLQaJKMNtqJ1fZQoaAZoCWgPQwj1S8RbJz5yQJSGlFKUaBVL+GgWR0C0GnlN1yNodX2UKGgGaAloD0MIMUCiCRQNckCUhpRSlGgVS/VoFkdAtBpyIZZSvXV9lChoBmgJaA9DCC7/If328XBAlIaUUpRoFUvuaBZHQLQafOktVaR1fZQoaAZoCWgPQwjDt7BuvPpyQJSGlFKUaBVL7WgWR0C0GovzOHFhdX2UKGgGaAloD0MI3bJD/EOHbkCUhpRSlGgVS9toFkdAtBqeIeo1k3V9lChoBmgJaA9DCJ5CrtSzym5AlIaUUpRoFUvcaBZHQLQam8G9pRJ1fZQoaAZoCWgPQwgnaf6YlvdwQJSGlFKUaBVL4mgWR0C0GsAhfShKdX2UKGgGaAloD0MIj46rkd1UcECUhpRSlGgVS/JoFkdAtBrSQNkOJHV9lChoBmgJaA9DCLSrkPITFXJAlIaUUpRoFUvqaBZHQLQa37Pppvh1fZQoaAZoCWgPQwjswaT4OCJyQJSGlFKUaBVL4mgWR0C0GuS4SYgJdX2UKGgGaAloD0MIIqev52uxcECUhpRSlGgVTQABaBZHQLQd4974SHx1fZQoaAZoCWgPQwh8mShCqnJxQJSGlFKUaBVL9mgWR0C0HebOqvNedX2UKGgGaAloD0MIHCYapGDTckCUhpRSlGgVTRIBaBZHQLQeLrVOKwZ1fZQoaAZoCWgPQwhl3xXBvxtyQJSGlFKUaBVNAwFoFkdAtB46qsEJSnV9lChoBmgJaA9DCNHMk2uKdnFAlIaUUpRoFU0LAWgWR0C0HllE3KjjdX2UKGgGaAloD0MIGejaF5CKcECUhpRSlGgVTQIBaBZHQLQepA9mpVF1fZQoaAZoCWgPQwgOFeP8TchxQJSGlFKUaBVL3mgWR0C0HrKDsdDIdX2UKGgGaAloD0MIYTYBhmVlcUCUhpRSlGgVS/poFkdAtB72lP8AJnV9lChoBmgJaA9DCBRf7ShOkm9AlIaUUpRoFUvnaBZHQLQe9TtsvZh1fZQoaAZoCWgPQwg2Bp0QutFvQJSGlFKUaBVNBwFoFkdAtB8f9LpRoHV9lChoBmgJaA9DCE6Zm2/EpnFAlIaUUpRoFUvoaBZHQLQfKXtBv751fZQoaAZoCWgPQwj/z2G+vIRwQJSGlFKUaBVL62gWR0C0H0HnyNGWdX2UKGgGaAloD0MIYHXkSOf4cUCUhpRSlGgVTRsBaBZHQLQfWncclw91fZQoaAZoCWgPQwjX9nZL8g1xQJSGlFKUaBVNOAFoFkdAtB9pJjDsMXV9lChoBmgJaA9DCOrpI/AHkG5AlIaUUpRoFUv7aBZHQLQfbhMajvd1fZQoaAZoCWgPQwjvqDEhJsBwQJSGlFKUaBVL4WgWR0C0H2jhLoOhdX2UKGgGaAloD0MIPzvgumLKcUCUhpRSlGgVTQUBaBZHQLQfgjABT4t1fZQoaAZoCWgPQwjpmPOMfVBuQJSGlFKUaBVNEgFoFkdAtB+rWoWHlHV9lChoBmgJaA9DCKQzMPIyIHJAlIaUUpRoFUvsaBZHQLQfv/tIClt1fZQoaAZoCWgPQwja5Vsf1tdsQJSGlFKUaBVL6WgWR0C0H8YVM23sdX2UKGgGaAloD0MI31FjQoxpcUCUhpRSlGgVS/doFkdAtB/3zpX6qXV9lChoBmgJaA9DCNqqJLIPlnJAlIaUUpRoFUv8aBZHQLQgSB+Wnj11fZQoaAZoCWgPQwh3ai43mP5wQJSGlFKUaBVL5mgWR0C0IGrU9ZA6dX2UKGgGaAloD0MIGeQuwpSpcUCUhpRSlGgVS+VoFkdAtCCY7eVLSXV9lChoBmgJaA9DCGO0jqpmTHFAlIaUUpRoFUvsaBZHQLQgnQN0/4Z1fZQoaAZoCWgPQwjVWS2wx0JvQJSGlFKUaBVL2mgWR0C0ILPZRKpUdX2UKGgGaAloD0MIFt9Q+CywcECUhpRSlGgVS9VoFkdAtCC4/3WWhXV9lChoBmgJaA9DCIielEkNEnFAlIaUUpRoFU0sAWgWR0C0IOTuSfUXdX2UKGgGaAloD0MIzSGphRKgc0CUhpRSlGgVS/FoFkdAtCDrI+4b0nV9lChoBmgJaA9DCGqlEMgl/HJAlIaUUpRoFU0GAWgWR0C0IOWmLtNSdX2UKGgGaAloD0MIoKaWrTU6cUCUhpRSlGgVS+toFkdAtCD5VlwtKHV9lChoBmgJaA9DCDEG1nE8YHJAlIaUUpRoFU0GAWgWR0C0IQZH3DekdX2UKGgGaAloD0MIbqRskbQ9ckCUhpRSlGgVS+hoFkdAtCEzoV2zOXV9lChoBmgJaA9DCJDdBUpKCXFAlIaUUpRoFU0BAWgWR0C0IUQwsXizdX2UKGgGaAloD0MIOWHCaFZSckCUhpRSlGgVTZ8BaBZHQLQhXcABDG91fZQoaAZoCWgPQwioqWVrPXhxQJSGlFKUaBVNGgFoFkdAtCGEddVvM3V9lChoBmgJaA9DCHXniefsSXBAlIaUUpRoFUv8aBZHQLQhi+Sr5qN1fZQoaAZoCWgPQwjZeLDFbtBwQJSGlFKUaBVL8GgWR0C0IeWdd3SsdX2UKGgGaAloD0MIiV+xhktrcUCUhpRSlGgVTQcBaBZHQLQh7gv114h1fZQoaAZoCWgPQwgVjiCVIihwQJSGlFKUaBVL32gWR0C0IffXoTwldX2UKGgGaAloD0MIByl4CvlqcUCUhpRSlGgVS+toFkdAtCIpUIcBEXV9lChoBmgJaA9DCNY6cTleEHBAlIaUUpRoFUvwaBZHQLQiLGcFyJd1fZQoaAZoCWgPQwiO5zOg3rpxQJSGlFKUaBVL5mgWR0C0IlJwbVBldX2UKGgGaAloD0MI4WJFDWbncUCUhpRSlGgVTRMBaBZHQLQiTmixmkF1fZQoaAZoCWgPQwgB3gIJSiVwQJSGlFKUaBVL5WgWR0C0Il0Qsf7rdX2UKGgGaAloD0MIoN6Mmm9LcECUhpRSlGgVS/loFkdAtCJpZq20A3V9lChoBmgJaA9DCP7V477VKXFAlIaUUpRoFUv6aBZHQLQiakupS751fZQoaAZoCWgPQwgZkSi0bBBzQJSGlFKUaBVL1mgWR0C0In4//vORdX2UKGgGaAloD0MI0Jm0qbrub0CUhpRSlGgVS9doFkdAtCKNhJAdGXV9lChoBmgJaA9DCHaopiQr0XJAlIaUUpRoFU0HAWgWR0C0IpSQHRkVdX2UKGgGaAloD0MICTTY1Hn3bECUhpRSlGgVS+toFkdAtCK7gzguRXV9lChoBmgJaA9DCMvz4O6snXNAlIaUUpRoFUvoaBZHQLQi4i2lVLl1fZQoaAZoCWgPQwj0cALTafxtQJSGlFKUaBVL+mgWR0C0IvWGATZhdX2UKGgGaAloD0MIDwu1prmicUCUhpRSlGgVS+xoFkdAtCNGHrQgLnV9lChoBmgJaA9DCKcgPxs5g29AlIaUUpRoFU0NAWgWR0C0I3plJ6IFdX2UKGgGaAloD0MI7KF9rCDecUCUhpRSlGgVTQcBaBZHQLQjf4axX4l1fZQoaAZoCWgPQwhtcvik0zpwQJSGlFKUaBVL+WgWR0C0I6AeV9ncdX2UKGgGaAloD0MImaCGb+GZbECUhpRSlGgVS9poFkdAtCOuhYeT3nV9lChoBmgJaA9DCJQvaCGBMG5AlIaUUpRoFUvjaBZHQLQjsaXa8Hx1fZQoaAZoCWgPQwj+8smKoSZzQJSGlFKUaBVL/GgWR0C0I89PYWcjdX2UKGgGaAloD0MIur2kMZp6ckCUhpRSlGgVTR0BaBZHQLQj23z+WGB1fZQoaAZoCWgPQwi4HRoWo81uQJSGlFKUaBVNAwFoFkdAtCPXFwT/Q3V9lChoBmgJaA9DCBh7L77oDnFAlIaUUpRoFUvjaBZHQLQj26Oo5xR1fZQoaAZoCWgPQwig/UgRGV1yQJSGlFKUaBVL/mgWR0C0I+qJVKf4dX2UKGgGaAloD0MI+rmhKfvNcUCUhpRSlGgVS+9oFkdAtCP+mvW6LHV9lChoBmgJaA9DCKfmcoMhYXFAlIaUUpRoFUviaBZHQLQkH60pmVZ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 616, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "False", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8d685a5c71e79872a42f6754c32a64ce6bc2ee83f4e431a4bb80430b3b173928
|
3 |
+
size 197938
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 277.15260074172005, "std_reward": 21.475316269796796, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-06T03:34:47.954305"}
|