YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
Llamba Models
The Llamba models are part of Cartesia's Edge library, designed for efficient, high-performance machine learning applications.
For more details, refer to the paper.
Usage
Llamba on PyTorch
To use Llamba with PyTorch:
- Install the required package:
pip install --no-binary :all: cartesia-pytorch
- Load and run the model
from transformers import AutoTokenizer
from cartesia_pytorch.Llamba.llamba import LlambaLMHeadModel
model = LlambaLMHeadModel.from_pretrained("AvivBick/Llamba-1B", strict=True).to('cuda')
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.2-1B")
input_ids = tokenizer("Hello, my name is", return_tensors="pt").input_ids
input_ids = input_ids.to('cuda')
output = model.generate(input_ids, max_length=100)[0]
print(tokenizer.decode(output, skip_special_tokens=True))
Llamba on MLX
To run Llamba with the Metal framework:
(Add specific instructions here when available.)
Evaluations
Details on model performance, benchmarks, and evaluation metrics can be found in the paper link.
(Expand on this section if specific results or datasets are available.)
- Downloads last month
- 30