File size: 16,374 Bytes
d656ed5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
import torch
import torch.nn as nn
import numpy as np
from torch.autograd import Function
from transformers import PreTrainedModel
from transformers.models.roberta.modeling_roberta import (
    RobertaModel, 
    RobertaClassificationHead, 
)
from typing import Union, Tuple, Optional
from transformers.modeling_outputs import (
    SequenceClassifierOutput, 
    MultipleChoiceModelOutput, 
    QuestionAnsweringModelOutput
)
from transformers.utils import ModelOutput

from .configuration_pure_roberta import PureRobertaConfig


class CovarianceFunction(Function):

    @staticmethod
    def forward(ctx, inputs):
        x = inputs
        b, c, h, w = x.data.shape
        m = h * w
        x = x.view(b, c, m)
        I_hat = (-1.0 / m / m) * torch.ones(m, m, device=x.device) + (
            1.0 / m
        ) * torch.eye(m, m, device=x.device)
        I_hat = I_hat.view(1, m, m).repeat(b, 1, 1).type(x.dtype)
        y = x @ I_hat @ x.transpose(-1, -2)
        ctx.save_for_backward(inputs, I_hat)
        return y

    @staticmethod
    def backward(ctx, grad_output):
        inputs, I_hat = ctx.saved_tensors
        x = inputs
        b, c, h, w = x.data.shape
        m = h * w
        x = x.view(b, c, m)
        grad_input = grad_output + grad_output.transpose(1, 2)
        grad_input = grad_input @ x @ I_hat
        grad_input = grad_input.reshape(b, c, h, w)
        return grad_input


class Covariance(nn.Module):

    def __init__(self):
        super(Covariance, self).__init__()
        
    def _covariance(self, x):
        return CovarianceFunction.apply(x)

    def forward(self, x):
        # x should be [batch_size, seq_len, embed_dim]
        if x.dim() == 2:
            x = x.transpose(-1, -2)
            C = self._covariance(x[None, :, :, None])
        C = C.squeeze(dim=0)
        return C


class PFSA(torch.nn.Module):
    """
    https://openreview.net/pdf?id=isodM5jTA7h
    """
    def __init__(self, input_dim, alpha=1):
        super(PFSA, self).__init__()
        self.input_dim = input_dim
        self.alpha = alpha

    def forward_one_sample(self, x):
        x = x.transpose(1, 2)[..., None]
        k = torch.mean(x, dim=[-1, -2], keepdim=True)
        kd = torch.sqrt((k - k.mean(dim=1, keepdim=True)).pow(2).sum(dim=1, keepdim=True)) # [B, 1, 1, 1]
        qd = torch.sqrt((x - x.mean(dim=1, keepdim=True)).pow(2).sum(dim=1, keepdim=True)) # [B, 1, T, 1]
        C_qk = (((x - x.mean(dim=1, keepdim=True)) * (k - k.mean(dim=1, keepdim=True))).sum(dim=1, keepdim=True)) / (qd * kd)
        A = (1 - torch.sigmoid(C_qk)) ** self.alpha
        out = x * A
        out = out.squeeze(dim=-1).transpose(1, 2)
        return out

    def forward(self, input_values, attention_mask=None):
        """
        x: [B, T, F]
        """
        out = []
        b, t, f = input_values.shape
        for x, mask in zip(input_values, attention_mask):
            x = x.view(1, t, f)
            # x_in = x[:, :sum(mask), :]
            x_in = x[:, :int(mask.sum().item()), :]
            x_out = self.forward_one_sample(x_in)
            x_expanded = torch.zeros_like(x, device=x.device)
            x_expanded[:, :x_out.shape[-2], :x_out.shape[-1]] = x_out
            out.append(x_expanded)
        out = torch.vstack(out)
        out = out.view(b, t, f)
        return out


class PURE(torch.nn.Module):

    def __init__(
        self, 
        in_dim, 
        svd_rank=16, 
        num_pc_to_remove=1, 
        center=False, 
        num_iters=2, 
        alpha=1, 
        disable_pcr=False, 
        disable_pfsa=False, 
        disable_covariance=True, 
        *args, **kwargs
    ):
        super().__init__()
        self.in_dim = in_dim
        self.svd_rank = svd_rank
        self.num_pc_to_remove = num_pc_to_remove
        self.center = center
        self.num_iters = num_iters
        self.do_pcr = not disable_pcr
        self.do_pfsa = not disable_pfsa
        self.do_covariance = not disable_covariance
        self.attention = PFSA(in_dim, alpha=alpha)
    
    def _compute_pc(self, X, attention_mask):
        """
        x: (B, T, F)
        """
        pcs = []
        bs, seqlen, dim = X.shape
        for x, mask in zip(X, attention_mask):
            rank = int(mask.sum().item())
            x = x[:rank, :]
            if self.do_covariance:
                x = Covariance()(x)
                q = self.svd_rank
            else:
                q = min(self.svd_rank, rank)
            _, _, V = torch.pca_lowrank(x, q=q, center=self.center, niter=self.num_iters)
            # _, _, Vh = torch.linalg.svd(x_, full_matrices=False)
            # V = Vh.mH
            pc = V.transpose(0, 1)[:self.num_pc_to_remove, :] # pc: [K, F]
            pcs.append(pc)
        # pcs = torch.vstack(pcs)
        # pcs = pcs.view(bs, self.num_pc_to_remove, dim)
        return pcs

    def _remove_pc(self, X, pcs):
        """
        [B, T, F], [B, ..., F]
        """
        b, t, f = X.shape
        out = []
        for i, (x, pc) in enumerate(zip(X, pcs)):
            # v = []
            # for j, t in enumerate(x):
            #     t_ = t
            #     for c_ in c:
            #         t_ = t_.view(f, 1) - c_.view(f, 1) @ c_.view(1, f) @ t.view(f, 1)
            #     v.append(t_.transpose(-1, -2))
            # v = torch.vstack(v)
            v = x - x @ pc.transpose(0, 1) @ pc
            out.append(v[None, ...])
        out = torch.vstack(out)
        return out

    def forward(self, input_values, attention_mask=None, *args, **kwargs):
        """
        PCR -> Attention
        x: (B, T, F)
        """
        x = input_values
        if self.do_pcr:
            pc = self._compute_pc(x, attention_mask) # pc: [B, K, F]
            xx = self._remove_pc(x, pc)
            # xx = xt - xt @ pc.transpose(1, 2) @ pc # [B, T, F] * [B, F, K] * [B, K, F] = [B, T, F]
        else:
            xx = x
        if self.do_pfsa:
            xx = self.attention(xx, attention_mask)
        return xx


class StatisticsPooling(torch.nn.Module):

    def __init__(self, return_mean=True, return_std=True):
        super().__init__()

        # Small value for GaussNoise
        self.eps = 1e-5
        self.return_mean = return_mean
        self.return_std = return_std
        if not (self.return_mean or self.return_std):
            raise ValueError(
                "both of statistics are equal to False \n"
                "consider enabling mean and/or std statistic pooling"
            )

    def forward(self, input_values, attention_mask=None):
        """Calculates mean and std for a batch (input tensor).

        Arguments
        ---------
        x : torch.Tensor
            It represents a tensor for a mini-batch.
        """
        x = input_values
        if attention_mask is None:
            if self.return_mean:
                mean = x.mean(dim=1)
            if self.return_std:
                std = x.std(dim=1)
        else:
            mean = []
            std = []
            for snt_id in range(x.shape[0]):
                # Avoiding padded time steps
                lengths = torch.sum(attention_mask, dim=1)
                relative_lengths = lengths / torch.max(lengths)
                actual_size = torch.round(relative_lengths[snt_id] * x.shape[1]).int()
                # actual_size = int(torch.round(lengths[snt_id] * x.shape[1]))

                # computing statistics
                if self.return_mean:
                    mean.append(
                        torch.mean(x[snt_id, 0:actual_size, ...], dim=0)
                    )
                if self.return_std:
                    std.append(torch.std(x[snt_id, 0:actual_size, ...], dim=0))
            if self.return_mean:
                mean = torch.stack(mean)
            if self.return_std:
                std = torch.stack(std)

        if self.return_mean:
            gnoise = self._get_gauss_noise(mean.size(), device=mean.device)
            gnoise = gnoise
            mean += gnoise
        if self.return_std:
            std = std + self.eps

        # Append mean and std of the batch
        if self.return_mean and self.return_std:
            pooled_stats = torch.cat((mean, std), dim=1)
            pooled_stats = pooled_stats.unsqueeze(1)
        elif self.return_mean:
            pooled_stats = mean.unsqueeze(1)
        elif self.return_std:
            pooled_stats = std.unsqueeze(1)

        return pooled_stats

    def _get_gauss_noise(self, shape_of_tensor, device="cpu"):
        """Returns a tensor of epsilon Gaussian noise.

        Arguments
        ---------
        shape_of_tensor : tensor
            It represents the size of tensor for generating Gaussian noise.
        """
        gnoise = torch.randn(shape_of_tensor, device=device)
        gnoise -= torch.min(gnoise)
        gnoise /= torch.max(gnoise)
        gnoise = self.eps * ((1 - 9) * gnoise + 9)

        return gnoise


class PureRobertaPreTrainedModel(PreTrainedModel):
    """
    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
    models.
    """

    config_class = PureRobertaConfig
    base_model_prefix = "pure_roberta"
    supports_gradient_checkpointing = True
    _no_split_modules = ["RobertaEmbeddings", "RobertaSelfAttention", "RobertaSdpaSelfAttention"]
    _supports_sdpa = True

    # Copied from transformers.models.bert.modeling_bert.BertPreTrainedModel._init_weights
    def _init_weights(self, module):
        """Initialize the weights"""
        if isinstance(module, nn.Linear):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()
        elif isinstance(module, nn.LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)


class PureRobertaForSequenceClassification(PureRobertaPreTrainedModel):

    def __init__(
        self, 
        config, 
        label_smoothing=0.0, 
    ):
        super().__init__(config)
        self.label_smoothing = label_smoothing
        self.num_labels = config.num_labels
        self.config = config

        self.roberta = RobertaModel(config, add_pooling_layer=False)
        self.pure = PURE(
            in_dim=config.hidden_size, 
            svd_rank=config.svd_rank, 
            num_pc_to_remove=config.num_pc_to_remove, 
            center=config.center, 
            num_iters=config.num_iters, 
            alpha=config.alpha, 
            disable_pcr=config.disable_pcr, 
            disable_pfsa=config.disable_pfsa, 
            disable_covariance=config.disable_covariance
        )
        self.mean = StatisticsPooling(return_mean=True, return_std=False)
        self.classifier = RobertaClassificationHead(config)

        # Initialize weights and apply final processing
        self.post_init()

    def forward_pure_embeddings(
        self, 
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        token_type_ids: Optional[torch.LongTensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
        r"""
        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
            config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
            `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.roberta(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        token_embeddings = outputs.last_hidden_state
        token_embeddings = self.pure(token_embeddings, attention_mask)

        return ModelOutput(
            last_hidden_state=token_embeddings,
        )

    def forward(
        self, 
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        token_type_ids: Optional[torch.LongTensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
        r"""
        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
            config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
            `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.roberta(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        token_embeddings = outputs.last_hidden_state
        token_embeddings = self.pure(token_embeddings, attention_mask)
        pooled_output = self.mean(token_embeddings).squeeze(1)
        logits = self.classifier(pooled_output)

        loss = None
        if labels is not None:
            if self.config.problem_type is None:
                if self.num_labels == 1:
                    self.config.problem_type = "regression"
                elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
                    self.config.problem_type = "single_label_classification"
                else:
                    self.config.problem_type = "multi_label_classification"

            if self.config.problem_type == "regression":
                loss_fct = nn.MSELoss()
                if self.num_labels == 1:
                    loss = loss_fct(logits.squeeze(), labels.squeeze())
                else:
                    loss = loss_fct(logits, labels)
            elif self.config.problem_type == "single_label_classification":
                loss_fct = nn.CrossEntropyLoss(label_smoothing=self.label_smoothing)
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
            elif self.config.problem_type == "multi_label_classification":
                loss_fct = nn.BCEWithLogitsLoss()
                loss = loss_fct(logits, labels)
        if not return_dict:
            output = (logits,) + outputs[2:]
            return ((loss,) + output) if loss is not None else output

        return SequenceClassifierOutput(
            loss=loss,
            logits=logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )