File size: 16,374 Bytes
d656ed5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 |
import torch
import torch.nn as nn
import numpy as np
from torch.autograd import Function
from transformers import PreTrainedModel
from transformers.models.roberta.modeling_roberta import (
RobertaModel,
RobertaClassificationHead,
)
from typing import Union, Tuple, Optional
from transformers.modeling_outputs import (
SequenceClassifierOutput,
MultipleChoiceModelOutput,
QuestionAnsweringModelOutput
)
from transformers.utils import ModelOutput
from .configuration_pure_roberta import PureRobertaConfig
class CovarianceFunction(Function):
@staticmethod
def forward(ctx, inputs):
x = inputs
b, c, h, w = x.data.shape
m = h * w
x = x.view(b, c, m)
I_hat = (-1.0 / m / m) * torch.ones(m, m, device=x.device) + (
1.0 / m
) * torch.eye(m, m, device=x.device)
I_hat = I_hat.view(1, m, m).repeat(b, 1, 1).type(x.dtype)
y = x @ I_hat @ x.transpose(-1, -2)
ctx.save_for_backward(inputs, I_hat)
return y
@staticmethod
def backward(ctx, grad_output):
inputs, I_hat = ctx.saved_tensors
x = inputs
b, c, h, w = x.data.shape
m = h * w
x = x.view(b, c, m)
grad_input = grad_output + grad_output.transpose(1, 2)
grad_input = grad_input @ x @ I_hat
grad_input = grad_input.reshape(b, c, h, w)
return grad_input
class Covariance(nn.Module):
def __init__(self):
super(Covariance, self).__init__()
def _covariance(self, x):
return CovarianceFunction.apply(x)
def forward(self, x):
# x should be [batch_size, seq_len, embed_dim]
if x.dim() == 2:
x = x.transpose(-1, -2)
C = self._covariance(x[None, :, :, None])
C = C.squeeze(dim=0)
return C
class PFSA(torch.nn.Module):
"""
https://openreview.net/pdf?id=isodM5jTA7h
"""
def __init__(self, input_dim, alpha=1):
super(PFSA, self).__init__()
self.input_dim = input_dim
self.alpha = alpha
def forward_one_sample(self, x):
x = x.transpose(1, 2)[..., None]
k = torch.mean(x, dim=[-1, -2], keepdim=True)
kd = torch.sqrt((k - k.mean(dim=1, keepdim=True)).pow(2).sum(dim=1, keepdim=True)) # [B, 1, 1, 1]
qd = torch.sqrt((x - x.mean(dim=1, keepdim=True)).pow(2).sum(dim=1, keepdim=True)) # [B, 1, T, 1]
C_qk = (((x - x.mean(dim=1, keepdim=True)) * (k - k.mean(dim=1, keepdim=True))).sum(dim=1, keepdim=True)) / (qd * kd)
A = (1 - torch.sigmoid(C_qk)) ** self.alpha
out = x * A
out = out.squeeze(dim=-1).transpose(1, 2)
return out
def forward(self, input_values, attention_mask=None):
"""
x: [B, T, F]
"""
out = []
b, t, f = input_values.shape
for x, mask in zip(input_values, attention_mask):
x = x.view(1, t, f)
# x_in = x[:, :sum(mask), :]
x_in = x[:, :int(mask.sum().item()), :]
x_out = self.forward_one_sample(x_in)
x_expanded = torch.zeros_like(x, device=x.device)
x_expanded[:, :x_out.shape[-2], :x_out.shape[-1]] = x_out
out.append(x_expanded)
out = torch.vstack(out)
out = out.view(b, t, f)
return out
class PURE(torch.nn.Module):
def __init__(
self,
in_dim,
svd_rank=16,
num_pc_to_remove=1,
center=False,
num_iters=2,
alpha=1,
disable_pcr=False,
disable_pfsa=False,
disable_covariance=True,
*args, **kwargs
):
super().__init__()
self.in_dim = in_dim
self.svd_rank = svd_rank
self.num_pc_to_remove = num_pc_to_remove
self.center = center
self.num_iters = num_iters
self.do_pcr = not disable_pcr
self.do_pfsa = not disable_pfsa
self.do_covariance = not disable_covariance
self.attention = PFSA(in_dim, alpha=alpha)
def _compute_pc(self, X, attention_mask):
"""
x: (B, T, F)
"""
pcs = []
bs, seqlen, dim = X.shape
for x, mask in zip(X, attention_mask):
rank = int(mask.sum().item())
x = x[:rank, :]
if self.do_covariance:
x = Covariance()(x)
q = self.svd_rank
else:
q = min(self.svd_rank, rank)
_, _, V = torch.pca_lowrank(x, q=q, center=self.center, niter=self.num_iters)
# _, _, Vh = torch.linalg.svd(x_, full_matrices=False)
# V = Vh.mH
pc = V.transpose(0, 1)[:self.num_pc_to_remove, :] # pc: [K, F]
pcs.append(pc)
# pcs = torch.vstack(pcs)
# pcs = pcs.view(bs, self.num_pc_to_remove, dim)
return pcs
def _remove_pc(self, X, pcs):
"""
[B, T, F], [B, ..., F]
"""
b, t, f = X.shape
out = []
for i, (x, pc) in enumerate(zip(X, pcs)):
# v = []
# for j, t in enumerate(x):
# t_ = t
# for c_ in c:
# t_ = t_.view(f, 1) - c_.view(f, 1) @ c_.view(1, f) @ t.view(f, 1)
# v.append(t_.transpose(-1, -2))
# v = torch.vstack(v)
v = x - x @ pc.transpose(0, 1) @ pc
out.append(v[None, ...])
out = torch.vstack(out)
return out
def forward(self, input_values, attention_mask=None, *args, **kwargs):
"""
PCR -> Attention
x: (B, T, F)
"""
x = input_values
if self.do_pcr:
pc = self._compute_pc(x, attention_mask) # pc: [B, K, F]
xx = self._remove_pc(x, pc)
# xx = xt - xt @ pc.transpose(1, 2) @ pc # [B, T, F] * [B, F, K] * [B, K, F] = [B, T, F]
else:
xx = x
if self.do_pfsa:
xx = self.attention(xx, attention_mask)
return xx
class StatisticsPooling(torch.nn.Module):
def __init__(self, return_mean=True, return_std=True):
super().__init__()
# Small value for GaussNoise
self.eps = 1e-5
self.return_mean = return_mean
self.return_std = return_std
if not (self.return_mean or self.return_std):
raise ValueError(
"both of statistics are equal to False \n"
"consider enabling mean and/or std statistic pooling"
)
def forward(self, input_values, attention_mask=None):
"""Calculates mean and std for a batch (input tensor).
Arguments
---------
x : torch.Tensor
It represents a tensor for a mini-batch.
"""
x = input_values
if attention_mask is None:
if self.return_mean:
mean = x.mean(dim=1)
if self.return_std:
std = x.std(dim=1)
else:
mean = []
std = []
for snt_id in range(x.shape[0]):
# Avoiding padded time steps
lengths = torch.sum(attention_mask, dim=1)
relative_lengths = lengths / torch.max(lengths)
actual_size = torch.round(relative_lengths[snt_id] * x.shape[1]).int()
# actual_size = int(torch.round(lengths[snt_id] * x.shape[1]))
# computing statistics
if self.return_mean:
mean.append(
torch.mean(x[snt_id, 0:actual_size, ...], dim=0)
)
if self.return_std:
std.append(torch.std(x[snt_id, 0:actual_size, ...], dim=0))
if self.return_mean:
mean = torch.stack(mean)
if self.return_std:
std = torch.stack(std)
if self.return_mean:
gnoise = self._get_gauss_noise(mean.size(), device=mean.device)
gnoise = gnoise
mean += gnoise
if self.return_std:
std = std + self.eps
# Append mean and std of the batch
if self.return_mean and self.return_std:
pooled_stats = torch.cat((mean, std), dim=1)
pooled_stats = pooled_stats.unsqueeze(1)
elif self.return_mean:
pooled_stats = mean.unsqueeze(1)
elif self.return_std:
pooled_stats = std.unsqueeze(1)
return pooled_stats
def _get_gauss_noise(self, shape_of_tensor, device="cpu"):
"""Returns a tensor of epsilon Gaussian noise.
Arguments
---------
shape_of_tensor : tensor
It represents the size of tensor for generating Gaussian noise.
"""
gnoise = torch.randn(shape_of_tensor, device=device)
gnoise -= torch.min(gnoise)
gnoise /= torch.max(gnoise)
gnoise = self.eps * ((1 - 9) * gnoise + 9)
return gnoise
class PureRobertaPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = PureRobertaConfig
base_model_prefix = "pure_roberta"
supports_gradient_checkpointing = True
_no_split_modules = ["RobertaEmbeddings", "RobertaSelfAttention", "RobertaSdpaSelfAttention"]
_supports_sdpa = True
# Copied from transformers.models.bert.modeling_bert.BertPreTrainedModel._init_weights
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, nn.Linear):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
class PureRobertaForSequenceClassification(PureRobertaPreTrainedModel):
def __init__(
self,
config,
label_smoothing=0.0,
):
super().__init__(config)
self.label_smoothing = label_smoothing
self.num_labels = config.num_labels
self.config = config
self.roberta = RobertaModel(config, add_pooling_layer=False)
self.pure = PURE(
in_dim=config.hidden_size,
svd_rank=config.svd_rank,
num_pc_to_remove=config.num_pc_to_remove,
center=config.center,
num_iters=config.num_iters,
alpha=config.alpha,
disable_pcr=config.disable_pcr,
disable_pfsa=config.disable_pfsa,
disable_covariance=config.disable_covariance
)
self.mean = StatisticsPooling(return_mean=True, return_std=False)
self.classifier = RobertaClassificationHead(config)
# Initialize weights and apply final processing
self.post_init()
def forward_pure_embeddings(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.roberta(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
token_embeddings = outputs.last_hidden_state
token_embeddings = self.pure(token_embeddings, attention_mask)
return ModelOutput(
last_hidden_state=token_embeddings,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.roberta(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
token_embeddings = outputs.last_hidden_state
token_embeddings = self.pure(token_embeddings, attention_mask)
pooled_output = self.mean(token_embeddings).squeeze(1)
logits = self.classifier(pooled_output)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = nn.MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = nn.CrossEntropyLoss(label_smoothing=self.label_smoothing)
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = nn.BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
|