yangwang825
commited on
Upload PureRobertaForSequenceClassification
Browse files- config.json +5 -2
- model.safetensors +3 -0
- modeling_pure_roberta.py +445 -0
config.json
CHANGED
@@ -1,11 +1,13 @@
|
|
1 |
{
|
|
|
2 |
"alpha": 1,
|
3 |
"architectures": [
|
4 |
-
"
|
5 |
],
|
6 |
"attention_probs_dropout_prob": 0.1,
|
7 |
"auto_map": {
|
8 |
-
"AutoConfig": "configuration_pure_roberta.PureRobertaConfig"
|
|
|
9 |
},
|
10 |
"bos_token_id": 0,
|
11 |
"center": false,
|
@@ -29,6 +31,7 @@
|
|
29 |
"pad_token_id": 1,
|
30 |
"position_embedding_type": "absolute",
|
31 |
"svd_rank": 5,
|
|
|
32 |
"transformers_version": "4.44.2",
|
33 |
"type_vocab_size": 1,
|
34 |
"use_cache": true,
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "roberta-base",
|
3 |
"alpha": 1,
|
4 |
"architectures": [
|
5 |
+
"PureRobertaForSequenceClassification"
|
6 |
],
|
7 |
"attention_probs_dropout_prob": 0.1,
|
8 |
"auto_map": {
|
9 |
+
"AutoConfig": "configuration_pure_roberta.PureRobertaConfig",
|
10 |
+
"AutoModelForSequenceClassification": "modeling_pure_roberta.PureRobertaForSequenceClassification"
|
11 |
},
|
12 |
"bos_token_id": 0,
|
13 |
"center": false,
|
|
|
31 |
"pad_token_id": 1,
|
32 |
"position_embedding_type": "absolute",
|
33 |
"svd_rank": 5,
|
34 |
+
"torch_dtype": "float32",
|
35 |
"transformers_version": "4.44.2",
|
36 |
"type_vocab_size": 1,
|
37 |
"use_cache": true,
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:34e1a941c91a240017e269af15d41dfb8fdb7f510f51f4c820fc0bb96e8827c4
|
3 |
+
size 498612824
|
modeling_pure_roberta.py
ADDED
@@ -0,0 +1,445 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import numpy as np
|
4 |
+
from torch.autograd import Function
|
5 |
+
from transformers import PreTrainedModel
|
6 |
+
from transformers.models.roberta.modeling_roberta import (
|
7 |
+
RobertaModel,
|
8 |
+
RobertaClassificationHead,
|
9 |
+
)
|
10 |
+
from typing import Union, Tuple, Optional
|
11 |
+
from transformers.modeling_outputs import (
|
12 |
+
SequenceClassifierOutput,
|
13 |
+
MultipleChoiceModelOutput,
|
14 |
+
QuestionAnsweringModelOutput
|
15 |
+
)
|
16 |
+
from transformers.utils import ModelOutput
|
17 |
+
|
18 |
+
from .configuration_pure_roberta import PureRobertaConfig
|
19 |
+
|
20 |
+
|
21 |
+
class CovarianceFunction(Function):
|
22 |
+
|
23 |
+
@staticmethod
|
24 |
+
def forward(ctx, inputs):
|
25 |
+
x = inputs
|
26 |
+
b, c, h, w = x.data.shape
|
27 |
+
m = h * w
|
28 |
+
x = x.view(b, c, m)
|
29 |
+
I_hat = (-1.0 / m / m) * torch.ones(m, m, device=x.device) + (
|
30 |
+
1.0 / m
|
31 |
+
) * torch.eye(m, m, device=x.device)
|
32 |
+
I_hat = I_hat.view(1, m, m).repeat(b, 1, 1).type(x.dtype)
|
33 |
+
y = x @ I_hat @ x.transpose(-1, -2)
|
34 |
+
ctx.save_for_backward(inputs, I_hat)
|
35 |
+
return y
|
36 |
+
|
37 |
+
@staticmethod
|
38 |
+
def backward(ctx, grad_output):
|
39 |
+
inputs, I_hat = ctx.saved_tensors
|
40 |
+
x = inputs
|
41 |
+
b, c, h, w = x.data.shape
|
42 |
+
m = h * w
|
43 |
+
x = x.view(b, c, m)
|
44 |
+
grad_input = grad_output + grad_output.transpose(1, 2)
|
45 |
+
grad_input = grad_input @ x @ I_hat
|
46 |
+
grad_input = grad_input.reshape(b, c, h, w)
|
47 |
+
return grad_input
|
48 |
+
|
49 |
+
|
50 |
+
class Covariance(nn.Module):
|
51 |
+
|
52 |
+
def __init__(self):
|
53 |
+
super(Covariance, self).__init__()
|
54 |
+
|
55 |
+
def _covariance(self, x):
|
56 |
+
return CovarianceFunction.apply(x)
|
57 |
+
|
58 |
+
def forward(self, x):
|
59 |
+
# x should be [batch_size, seq_len, embed_dim]
|
60 |
+
if x.dim() == 2:
|
61 |
+
x = x.transpose(-1, -2)
|
62 |
+
C = self._covariance(x[None, :, :, None])
|
63 |
+
C = C.squeeze(dim=0)
|
64 |
+
return C
|
65 |
+
|
66 |
+
|
67 |
+
class PFSA(torch.nn.Module):
|
68 |
+
"""
|
69 |
+
https://openreview.net/pdf?id=isodM5jTA7h
|
70 |
+
"""
|
71 |
+
def __init__(self, input_dim, alpha=1):
|
72 |
+
super(PFSA, self).__init__()
|
73 |
+
self.input_dim = input_dim
|
74 |
+
self.alpha = alpha
|
75 |
+
|
76 |
+
def forward_one_sample(self, x):
|
77 |
+
x = x.transpose(1, 2)[..., None]
|
78 |
+
k = torch.mean(x, dim=[-1, -2], keepdim=True)
|
79 |
+
kd = torch.sqrt((k - k.mean(dim=1, keepdim=True)).pow(2).sum(dim=1, keepdim=True)) # [B, 1, 1, 1]
|
80 |
+
qd = torch.sqrt((x - x.mean(dim=1, keepdim=True)).pow(2).sum(dim=1, keepdim=True)) # [B, 1, T, 1]
|
81 |
+
C_qk = (((x - x.mean(dim=1, keepdim=True)) * (k - k.mean(dim=1, keepdim=True))).sum(dim=1, keepdim=True)) / (qd * kd)
|
82 |
+
A = (1 - torch.sigmoid(C_qk)) ** self.alpha
|
83 |
+
out = x * A
|
84 |
+
out = out.squeeze(dim=-1).transpose(1, 2)
|
85 |
+
return out
|
86 |
+
|
87 |
+
def forward(self, input_values, attention_mask=None):
|
88 |
+
"""
|
89 |
+
x: [B, T, F]
|
90 |
+
"""
|
91 |
+
out = []
|
92 |
+
b, t, f = input_values.shape
|
93 |
+
for x, mask in zip(input_values, attention_mask):
|
94 |
+
x = x.view(1, t, f)
|
95 |
+
# x_in = x[:, :sum(mask), :]
|
96 |
+
x_in = x[:, :int(mask.sum().item()), :]
|
97 |
+
x_out = self.forward_one_sample(x_in)
|
98 |
+
x_expanded = torch.zeros_like(x, device=x.device)
|
99 |
+
x_expanded[:, :x_out.shape[-2], :x_out.shape[-1]] = x_out
|
100 |
+
out.append(x_expanded)
|
101 |
+
out = torch.vstack(out)
|
102 |
+
out = out.view(b, t, f)
|
103 |
+
return out
|
104 |
+
|
105 |
+
|
106 |
+
class PURE(torch.nn.Module):
|
107 |
+
|
108 |
+
def __init__(
|
109 |
+
self,
|
110 |
+
in_dim,
|
111 |
+
svd_rank=16,
|
112 |
+
num_pc_to_remove=1,
|
113 |
+
center=False,
|
114 |
+
num_iters=2,
|
115 |
+
alpha=1,
|
116 |
+
disable_pcr=False,
|
117 |
+
disable_pfsa=False,
|
118 |
+
disable_covariance=True,
|
119 |
+
*args, **kwargs
|
120 |
+
):
|
121 |
+
super().__init__()
|
122 |
+
self.in_dim = in_dim
|
123 |
+
self.svd_rank = svd_rank
|
124 |
+
self.num_pc_to_remove = num_pc_to_remove
|
125 |
+
self.center = center
|
126 |
+
self.num_iters = num_iters
|
127 |
+
self.do_pcr = not disable_pcr
|
128 |
+
self.do_pfsa = not disable_pfsa
|
129 |
+
self.do_covariance = not disable_covariance
|
130 |
+
self.attention = PFSA(in_dim, alpha=alpha)
|
131 |
+
|
132 |
+
def _compute_pc(self, X, attention_mask):
|
133 |
+
"""
|
134 |
+
x: (B, T, F)
|
135 |
+
"""
|
136 |
+
pcs = []
|
137 |
+
bs, seqlen, dim = X.shape
|
138 |
+
for x, mask in zip(X, attention_mask):
|
139 |
+
rank = int(mask.sum().item())
|
140 |
+
x = x[:rank, :]
|
141 |
+
if self.do_covariance:
|
142 |
+
x = Covariance()(x)
|
143 |
+
q = self.svd_rank
|
144 |
+
else:
|
145 |
+
q = min(self.svd_rank, rank)
|
146 |
+
_, _, V = torch.pca_lowrank(x, q=q, center=self.center, niter=self.num_iters)
|
147 |
+
# _, _, Vh = torch.linalg.svd(x_, full_matrices=False)
|
148 |
+
# V = Vh.mH
|
149 |
+
pc = V.transpose(0, 1)[:self.num_pc_to_remove, :] # pc: [K, F]
|
150 |
+
pcs.append(pc)
|
151 |
+
# pcs = torch.vstack(pcs)
|
152 |
+
# pcs = pcs.view(bs, self.num_pc_to_remove, dim)
|
153 |
+
return pcs
|
154 |
+
|
155 |
+
def _remove_pc(self, X, pcs):
|
156 |
+
"""
|
157 |
+
[B, T, F], [B, ..., F]
|
158 |
+
"""
|
159 |
+
b, t, f = X.shape
|
160 |
+
out = []
|
161 |
+
for i, (x, pc) in enumerate(zip(X, pcs)):
|
162 |
+
# v = []
|
163 |
+
# for j, t in enumerate(x):
|
164 |
+
# t_ = t
|
165 |
+
# for c_ in c:
|
166 |
+
# t_ = t_.view(f, 1) - c_.view(f, 1) @ c_.view(1, f) @ t.view(f, 1)
|
167 |
+
# v.append(t_.transpose(-1, -2))
|
168 |
+
# v = torch.vstack(v)
|
169 |
+
v = x - x @ pc.transpose(0, 1) @ pc
|
170 |
+
out.append(v[None, ...])
|
171 |
+
out = torch.vstack(out)
|
172 |
+
return out
|
173 |
+
|
174 |
+
def forward(self, input_values, attention_mask=None, *args, **kwargs):
|
175 |
+
"""
|
176 |
+
PCR -> Attention
|
177 |
+
x: (B, T, F)
|
178 |
+
"""
|
179 |
+
x = input_values
|
180 |
+
if self.do_pcr:
|
181 |
+
pc = self._compute_pc(x, attention_mask) # pc: [B, K, F]
|
182 |
+
xx = self._remove_pc(x, pc)
|
183 |
+
# xx = xt - xt @ pc.transpose(1, 2) @ pc # [B, T, F] * [B, F, K] * [B, K, F] = [B, T, F]
|
184 |
+
else:
|
185 |
+
xx = x
|
186 |
+
if self.do_pfsa:
|
187 |
+
xx = self.attention(xx, attention_mask)
|
188 |
+
return xx
|
189 |
+
|
190 |
+
|
191 |
+
class StatisticsPooling(torch.nn.Module):
|
192 |
+
|
193 |
+
def __init__(self, return_mean=True, return_std=True):
|
194 |
+
super().__init__()
|
195 |
+
|
196 |
+
# Small value for GaussNoise
|
197 |
+
self.eps = 1e-5
|
198 |
+
self.return_mean = return_mean
|
199 |
+
self.return_std = return_std
|
200 |
+
if not (self.return_mean or self.return_std):
|
201 |
+
raise ValueError(
|
202 |
+
"both of statistics are equal to False \n"
|
203 |
+
"consider enabling mean and/or std statistic pooling"
|
204 |
+
)
|
205 |
+
|
206 |
+
def forward(self, input_values, attention_mask=None):
|
207 |
+
"""Calculates mean and std for a batch (input tensor).
|
208 |
+
|
209 |
+
Arguments
|
210 |
+
---------
|
211 |
+
x : torch.Tensor
|
212 |
+
It represents a tensor for a mini-batch.
|
213 |
+
"""
|
214 |
+
x = input_values
|
215 |
+
if attention_mask is None:
|
216 |
+
if self.return_mean:
|
217 |
+
mean = x.mean(dim=1)
|
218 |
+
if self.return_std:
|
219 |
+
std = x.std(dim=1)
|
220 |
+
else:
|
221 |
+
mean = []
|
222 |
+
std = []
|
223 |
+
for snt_id in range(x.shape[0]):
|
224 |
+
# Avoiding padded time steps
|
225 |
+
lengths = torch.sum(attention_mask, dim=1)
|
226 |
+
relative_lengths = lengths / torch.max(lengths)
|
227 |
+
actual_size = torch.round(relative_lengths[snt_id] * x.shape[1]).int()
|
228 |
+
# actual_size = int(torch.round(lengths[snt_id] * x.shape[1]))
|
229 |
+
|
230 |
+
# computing statistics
|
231 |
+
if self.return_mean:
|
232 |
+
mean.append(
|
233 |
+
torch.mean(x[snt_id, 0:actual_size, ...], dim=0)
|
234 |
+
)
|
235 |
+
if self.return_std:
|
236 |
+
std.append(torch.std(x[snt_id, 0:actual_size, ...], dim=0))
|
237 |
+
if self.return_mean:
|
238 |
+
mean = torch.stack(mean)
|
239 |
+
if self.return_std:
|
240 |
+
std = torch.stack(std)
|
241 |
+
|
242 |
+
if self.return_mean:
|
243 |
+
gnoise = self._get_gauss_noise(mean.size(), device=mean.device)
|
244 |
+
gnoise = gnoise
|
245 |
+
mean += gnoise
|
246 |
+
if self.return_std:
|
247 |
+
std = std + self.eps
|
248 |
+
|
249 |
+
# Append mean and std of the batch
|
250 |
+
if self.return_mean and self.return_std:
|
251 |
+
pooled_stats = torch.cat((mean, std), dim=1)
|
252 |
+
pooled_stats = pooled_stats.unsqueeze(1)
|
253 |
+
elif self.return_mean:
|
254 |
+
pooled_stats = mean.unsqueeze(1)
|
255 |
+
elif self.return_std:
|
256 |
+
pooled_stats = std.unsqueeze(1)
|
257 |
+
|
258 |
+
return pooled_stats
|
259 |
+
|
260 |
+
def _get_gauss_noise(self, shape_of_tensor, device="cpu"):
|
261 |
+
"""Returns a tensor of epsilon Gaussian noise.
|
262 |
+
|
263 |
+
Arguments
|
264 |
+
---------
|
265 |
+
shape_of_tensor : tensor
|
266 |
+
It represents the size of tensor for generating Gaussian noise.
|
267 |
+
"""
|
268 |
+
gnoise = torch.randn(shape_of_tensor, device=device)
|
269 |
+
gnoise -= torch.min(gnoise)
|
270 |
+
gnoise /= torch.max(gnoise)
|
271 |
+
gnoise = self.eps * ((1 - 9) * gnoise + 9)
|
272 |
+
|
273 |
+
return gnoise
|
274 |
+
|
275 |
+
|
276 |
+
class PureRobertaPreTrainedModel(PreTrainedModel):
|
277 |
+
"""
|
278 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
279 |
+
models.
|
280 |
+
"""
|
281 |
+
|
282 |
+
config_class = PureRobertaConfig
|
283 |
+
base_model_prefix = "pure_roberta"
|
284 |
+
supports_gradient_checkpointing = True
|
285 |
+
_no_split_modules = ["RobertaEmbeddings", "RobertaSelfAttention", "RobertaSdpaSelfAttention"]
|
286 |
+
_supports_sdpa = True
|
287 |
+
|
288 |
+
# Copied from transformers.models.bert.modeling_bert.BertPreTrainedModel._init_weights
|
289 |
+
def _init_weights(self, module):
|
290 |
+
"""Initialize the weights"""
|
291 |
+
if isinstance(module, nn.Linear):
|
292 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
293 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
294 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
295 |
+
if module.bias is not None:
|
296 |
+
module.bias.data.zero_()
|
297 |
+
elif isinstance(module, nn.Embedding):
|
298 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
299 |
+
if module.padding_idx is not None:
|
300 |
+
module.weight.data[module.padding_idx].zero_()
|
301 |
+
elif isinstance(module, nn.LayerNorm):
|
302 |
+
module.bias.data.zero_()
|
303 |
+
module.weight.data.fill_(1.0)
|
304 |
+
|
305 |
+
|
306 |
+
class PureRobertaForSequenceClassification(PureRobertaPreTrainedModel):
|
307 |
+
|
308 |
+
def __init__(
|
309 |
+
self,
|
310 |
+
config,
|
311 |
+
label_smoothing=0.0,
|
312 |
+
):
|
313 |
+
super().__init__(config)
|
314 |
+
self.label_smoothing = label_smoothing
|
315 |
+
self.num_labels = config.num_labels
|
316 |
+
self.config = config
|
317 |
+
|
318 |
+
self.roberta = RobertaModel(config, add_pooling_layer=False)
|
319 |
+
self.pure = PURE(
|
320 |
+
in_dim=config.hidden_size,
|
321 |
+
svd_rank=config.svd_rank,
|
322 |
+
num_pc_to_remove=config.num_pc_to_remove,
|
323 |
+
center=config.center,
|
324 |
+
num_iters=config.num_iters,
|
325 |
+
alpha=config.alpha,
|
326 |
+
disable_pcr=config.disable_pcr,
|
327 |
+
disable_pfsa=config.disable_pfsa,
|
328 |
+
disable_covariance=config.disable_covariance
|
329 |
+
)
|
330 |
+
self.mean = StatisticsPooling(return_mean=True, return_std=False)
|
331 |
+
self.classifier = RobertaClassificationHead(config)
|
332 |
+
|
333 |
+
# Initialize weights and apply final processing
|
334 |
+
self.post_init()
|
335 |
+
|
336 |
+
def forward_pure_embeddings(
|
337 |
+
self,
|
338 |
+
input_ids: Optional[torch.LongTensor] = None,
|
339 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
340 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
341 |
+
position_ids: Optional[torch.LongTensor] = None,
|
342 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
343 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
344 |
+
labels: Optional[torch.LongTensor] = None,
|
345 |
+
output_attentions: Optional[bool] = None,
|
346 |
+
output_hidden_states: Optional[bool] = None,
|
347 |
+
return_dict: Optional[bool] = None,
|
348 |
+
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
|
349 |
+
r"""
|
350 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
351 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
352 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
353 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
354 |
+
"""
|
355 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
356 |
+
|
357 |
+
outputs = self.roberta(
|
358 |
+
input_ids,
|
359 |
+
attention_mask=attention_mask,
|
360 |
+
token_type_ids=token_type_ids,
|
361 |
+
position_ids=position_ids,
|
362 |
+
head_mask=head_mask,
|
363 |
+
inputs_embeds=inputs_embeds,
|
364 |
+
output_attentions=output_attentions,
|
365 |
+
output_hidden_states=output_hidden_states,
|
366 |
+
return_dict=return_dict,
|
367 |
+
)
|
368 |
+
|
369 |
+
token_embeddings = outputs.last_hidden_state
|
370 |
+
token_embeddings = self.pure(token_embeddings, attention_mask)
|
371 |
+
|
372 |
+
return ModelOutput(
|
373 |
+
last_hidden_state=token_embeddings,
|
374 |
+
)
|
375 |
+
|
376 |
+
def forward(
|
377 |
+
self,
|
378 |
+
input_ids: Optional[torch.LongTensor] = None,
|
379 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
380 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
381 |
+
position_ids: Optional[torch.LongTensor] = None,
|
382 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
383 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
384 |
+
labels: Optional[torch.LongTensor] = None,
|
385 |
+
output_attentions: Optional[bool] = None,
|
386 |
+
output_hidden_states: Optional[bool] = None,
|
387 |
+
return_dict: Optional[bool] = None,
|
388 |
+
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
|
389 |
+
r"""
|
390 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
391 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
392 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
393 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
394 |
+
"""
|
395 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
396 |
+
|
397 |
+
outputs = self.roberta(
|
398 |
+
input_ids,
|
399 |
+
attention_mask=attention_mask,
|
400 |
+
token_type_ids=token_type_ids,
|
401 |
+
position_ids=position_ids,
|
402 |
+
head_mask=head_mask,
|
403 |
+
inputs_embeds=inputs_embeds,
|
404 |
+
output_attentions=output_attentions,
|
405 |
+
output_hidden_states=output_hidden_states,
|
406 |
+
return_dict=return_dict,
|
407 |
+
)
|
408 |
+
|
409 |
+
token_embeddings = outputs.last_hidden_state
|
410 |
+
token_embeddings = self.pure(token_embeddings, attention_mask)
|
411 |
+
pooled_output = self.mean(token_embeddings).squeeze(1)
|
412 |
+
logits = self.classifier(pooled_output)
|
413 |
+
|
414 |
+
loss = None
|
415 |
+
if labels is not None:
|
416 |
+
if self.config.problem_type is None:
|
417 |
+
if self.num_labels == 1:
|
418 |
+
self.config.problem_type = "regression"
|
419 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
420 |
+
self.config.problem_type = "single_label_classification"
|
421 |
+
else:
|
422 |
+
self.config.problem_type = "multi_label_classification"
|
423 |
+
|
424 |
+
if self.config.problem_type == "regression":
|
425 |
+
loss_fct = nn.MSELoss()
|
426 |
+
if self.num_labels == 1:
|
427 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
428 |
+
else:
|
429 |
+
loss = loss_fct(logits, labels)
|
430 |
+
elif self.config.problem_type == "single_label_classification":
|
431 |
+
loss_fct = nn.CrossEntropyLoss(label_smoothing=self.label_smoothing)
|
432 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
433 |
+
elif self.config.problem_type == "multi_label_classification":
|
434 |
+
loss_fct = nn.BCEWithLogitsLoss()
|
435 |
+
loss = loss_fct(logits, labels)
|
436 |
+
if not return_dict:
|
437 |
+
output = (logits,) + outputs[2:]
|
438 |
+
return ((loss,) + output) if loss is not None else output
|
439 |
+
|
440 |
+
return SequenceClassifierOutput(
|
441 |
+
loss=loss,
|
442 |
+
logits=logits,
|
443 |
+
hidden_states=outputs.hidden_states,
|
444 |
+
attentions=outputs.attentions,
|
445 |
+
)
|