|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import math |
|
import os |
|
import random |
|
from typing import List, Tuple, Union |
|
import torch |
|
from torch import nn |
|
|
|
|
|
class DyLoRAModule(torch.nn.Module): |
|
""" |
|
replaces forward method of the original Linear, instead of replacing the original Linear module. |
|
""" |
|
|
|
|
|
def __init__(self, lora_name, org_module: torch.nn.Module, multiplier=1.0, lora_dim=4, alpha=1, unit=1): |
|
super().__init__() |
|
self.lora_name = lora_name |
|
self.lora_dim = lora_dim |
|
self.unit = unit |
|
assert self.lora_dim % self.unit == 0, "rank must be a multiple of unit" |
|
|
|
if org_module.__class__.__name__ == "Conv2d": |
|
in_dim = org_module.in_channels |
|
out_dim = org_module.out_channels |
|
else: |
|
in_dim = org_module.in_features |
|
out_dim = org_module.out_features |
|
|
|
if type(alpha) == torch.Tensor: |
|
alpha = alpha.detach().float().numpy() |
|
alpha = self.lora_dim if alpha is None or alpha == 0 else alpha |
|
self.scale = alpha / self.lora_dim |
|
self.register_buffer("alpha", torch.tensor(alpha)) |
|
|
|
self.is_conv2d = org_module.__class__.__name__ == "Conv2d" |
|
self.is_conv2d_3x3 = self.is_conv2d and org_module.kernel_size == (3, 3) |
|
|
|
if self.is_conv2d and self.is_conv2d_3x3: |
|
kernel_size = org_module.kernel_size |
|
self.stride = org_module.stride |
|
self.padding = org_module.padding |
|
self.lora_A = nn.ParameterList([org_module.weight.new_zeros((1, in_dim, *kernel_size)) for _ in range(self.lora_dim)]) |
|
self.lora_B = nn.ParameterList([org_module.weight.new_zeros((out_dim, 1, 1, 1)) for _ in range(self.lora_dim)]) |
|
else: |
|
self.lora_A = nn.ParameterList([org_module.weight.new_zeros((1, in_dim)) for _ in range(self.lora_dim)]) |
|
self.lora_B = nn.ParameterList([org_module.weight.new_zeros((out_dim, 1)) for _ in range(self.lora_dim)]) |
|
|
|
|
|
for lora in self.lora_A: |
|
torch.nn.init.kaiming_uniform_(lora, a=math.sqrt(5)) |
|
for lora in self.lora_B: |
|
torch.nn.init.zeros_(lora) |
|
|
|
self.multiplier = multiplier |
|
self.org_module = org_module |
|
|
|
def apply_to(self): |
|
self.org_forward = self.org_module.forward |
|
self.org_module.forward = self.forward |
|
del self.org_module |
|
|
|
def forward(self, x): |
|
result = self.org_forward(x) |
|
|
|
|
|
trainable_rank = random.randint(0, self.lora_dim - 1) |
|
trainable_rank = trainable_rank - trainable_rank % self.unit |
|
|
|
|
|
for i in range(0, trainable_rank): |
|
self.lora_A[i].requires_grad = False |
|
self.lora_B[i].requires_grad = False |
|
for i in range(trainable_rank, trainable_rank + self.unit): |
|
self.lora_A[i].requires_grad = True |
|
self.lora_B[i].requires_grad = True |
|
for i in range(trainable_rank + self.unit, self.lora_dim): |
|
self.lora_A[i].requires_grad = False |
|
self.lora_B[i].requires_grad = False |
|
|
|
lora_A = torch.cat(tuple(self.lora_A), dim=0) |
|
lora_B = torch.cat(tuple(self.lora_B), dim=1) |
|
|
|
|
|
if self.is_conv2d_3x3: |
|
ab = torch.nn.functional.conv2d(x, lora_A, stride=self.stride, padding=self.padding) |
|
ab = torch.nn.functional.conv2d(ab, lora_B) |
|
else: |
|
ab = x |
|
if self.is_conv2d: |
|
ab = ab.reshape(ab.size(0), ab.size(1), -1).transpose(1, 2) |
|
|
|
ab = torch.nn.functional.linear(ab, lora_A) |
|
ab = torch.nn.functional.linear(ab, lora_B) |
|
|
|
if self.is_conv2d: |
|
ab = ab.transpose(1, 2).reshape(ab.size(0), -1, *x.size()[2:]) |
|
|
|
|
|
result = result + ab * self.scale * math.sqrt(self.lora_dim / (trainable_rank + self.unit)) |
|
|
|
|
|
return result |
|
|
|
def state_dict(self, destination=None, prefix="", keep_vars=False): |
|
|
|
|
|
sd = super().state_dict(destination=destination, prefix=prefix, keep_vars=keep_vars) |
|
|
|
lora_A_weight = torch.cat(tuple(self.lora_A), dim=0) |
|
if self.is_conv2d and not self.is_conv2d_3x3: |
|
lora_A_weight = lora_A_weight.unsqueeze(-1).unsqueeze(-1) |
|
|
|
lora_B_weight = torch.cat(tuple(self.lora_B), dim=1) |
|
if self.is_conv2d and not self.is_conv2d_3x3: |
|
lora_B_weight = lora_B_weight.unsqueeze(-1).unsqueeze(-1) |
|
|
|
sd[self.lora_name + ".lora_down.weight"] = lora_A_weight if keep_vars else lora_A_weight.detach() |
|
sd[self.lora_name + ".lora_up.weight"] = lora_B_weight if keep_vars else lora_B_weight.detach() |
|
|
|
i = 0 |
|
while True: |
|
key_a = f"{self.lora_name}.lora_A.{i}" |
|
key_b = f"{self.lora_name}.lora_B.{i}" |
|
if key_a in sd: |
|
sd.pop(key_a) |
|
sd.pop(key_b) |
|
else: |
|
break |
|
i += 1 |
|
return sd |
|
|
|
def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs): |
|
|
|
lora_A_weight = state_dict.pop(self.lora_name + ".lora_down.weight", None) |
|
lora_B_weight = state_dict.pop(self.lora_name + ".lora_up.weight", None) |
|
|
|
if lora_A_weight is None or lora_B_weight is None: |
|
if strict: |
|
raise KeyError(f"{self.lora_name}.lora_down/up.weight is not found") |
|
else: |
|
return |
|
|
|
if self.is_conv2d and not self.is_conv2d_3x3: |
|
lora_A_weight = lora_A_weight.squeeze(-1).squeeze(-1) |
|
lora_B_weight = lora_B_weight.squeeze(-1).squeeze(-1) |
|
|
|
state_dict.update( |
|
{f"{self.lora_name}.lora_A.{i}": nn.Parameter(lora_A_weight[i].unsqueeze(0)) for i in range(lora_A_weight.size(0))} |
|
) |
|
state_dict.update( |
|
{f"{self.lora_name}.lora_B.{i}": nn.Parameter(lora_B_weight[:, i].unsqueeze(1)) for i in range(lora_B_weight.size(1))} |
|
) |
|
|
|
super()._load_from_state_dict(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs) |
|
|
|
|
|
def create_network(multiplier, network_dim, network_alpha, vae, text_encoder, unet, **kwargs): |
|
if network_dim is None: |
|
network_dim = 4 |
|
if network_alpha is None: |
|
network_alpha = 1.0 |
|
|
|
|
|
conv_dim = kwargs.get("conv_dim", None) |
|
conv_alpha = kwargs.get("conv_alpha", None) |
|
unit = kwargs.get("unit", None) |
|
if conv_dim is not None: |
|
conv_dim = int(conv_dim) |
|
assert conv_dim == network_dim, "conv_dim must be same as network_dim" |
|
if conv_alpha is None: |
|
conv_alpha = 1.0 |
|
else: |
|
conv_alpha = float(conv_alpha) |
|
if unit is not None: |
|
unit = int(unit) |
|
else: |
|
unit = 1 |
|
|
|
network = DyLoRANetwork( |
|
text_encoder, |
|
unet, |
|
multiplier=multiplier, |
|
lora_dim=network_dim, |
|
alpha=network_alpha, |
|
apply_to_conv=conv_dim is not None, |
|
unit=unit, |
|
varbose=True, |
|
) |
|
return network |
|
|
|
|
|
|
|
def create_network_from_weights(multiplier, file, vae, text_encoder, unet, weights_sd=None, for_inference=False, **kwargs): |
|
if weights_sd is None: |
|
if os.path.splitext(file)[1] == ".safetensors": |
|
from safetensors.torch import load_file, safe_open |
|
|
|
weights_sd = load_file(file) |
|
else: |
|
weights_sd = torch.load(file, map_location="cpu") |
|
|
|
|
|
modules_dim = {} |
|
modules_alpha = {} |
|
for key, value in weights_sd.items(): |
|
if "." not in key: |
|
continue |
|
|
|
lora_name = key.split(".")[0] |
|
if "alpha" in key: |
|
modules_alpha[lora_name] = value |
|
elif "lora_down" in key: |
|
dim = value.size()[0] |
|
modules_dim[lora_name] = dim |
|
|
|
|
|
|
|
for key in modules_dim.keys(): |
|
if key not in modules_alpha: |
|
modules_alpha = modules_dim[key] |
|
|
|
module_class = DyLoRAModule |
|
|
|
network = DyLoRANetwork( |
|
text_encoder, unet, multiplier=multiplier, modules_dim=modules_dim, modules_alpha=modules_alpha, module_class=module_class |
|
) |
|
return network, weights_sd |
|
|
|
|
|
class DyLoRANetwork(torch.nn.Module): |
|
UNET_TARGET_REPLACE_MODULE = ["Transformer2DModel"] |
|
UNET_TARGET_REPLACE_MODULE_CONV2D_3X3 = ["ResnetBlock2D", "Downsample2D", "Upsample2D"] |
|
TEXT_ENCODER_TARGET_REPLACE_MODULE = ["CLIPAttention", "CLIPMLP"] |
|
LORA_PREFIX_UNET = "lora_unet" |
|
LORA_PREFIX_TEXT_ENCODER = "lora_te" |
|
|
|
def __init__( |
|
self, |
|
text_encoder, |
|
unet, |
|
multiplier=1.0, |
|
lora_dim=4, |
|
alpha=1, |
|
apply_to_conv=False, |
|
modules_dim=None, |
|
modules_alpha=None, |
|
unit=1, |
|
module_class=DyLoRAModule, |
|
varbose=False, |
|
) -> None: |
|
super().__init__() |
|
self.multiplier = multiplier |
|
|
|
self.lora_dim = lora_dim |
|
self.alpha = alpha |
|
self.apply_to_conv = apply_to_conv |
|
|
|
if modules_dim is not None: |
|
print(f"create LoRA network from weights") |
|
else: |
|
print(f"create LoRA network. base dim (rank): {lora_dim}, alpha: {alpha}, unit: {unit}") |
|
if self.apply_to_conv: |
|
print(f"apply LoRA to Conv2d with kernel size (3,3).") |
|
|
|
|
|
def create_modules(is_unet, root_module: torch.nn.Module, target_replace_modules) -> List[DyLoRAModule]: |
|
prefix = DyLoRANetwork.LORA_PREFIX_UNET if is_unet else DyLoRANetwork.LORA_PREFIX_TEXT_ENCODER |
|
loras = [] |
|
for name, module in root_module.named_modules(): |
|
if module.__class__.__name__ in target_replace_modules: |
|
for child_name, child_module in module.named_modules(): |
|
is_linear = child_module.__class__.__name__ == "Linear" |
|
is_conv2d = child_module.__class__.__name__ == "Conv2d" |
|
is_conv2d_1x1 = is_conv2d and child_module.kernel_size == (1, 1) |
|
|
|
if is_linear or is_conv2d: |
|
lora_name = prefix + "." + name + "." + child_name |
|
lora_name = lora_name.replace(".", "_") |
|
|
|
dim = None |
|
alpha = None |
|
if modules_dim is not None: |
|
if lora_name in modules_dim: |
|
dim = modules_dim[lora_name] |
|
alpha = modules_alpha[lora_name] |
|
else: |
|
if is_linear or is_conv2d_1x1 or apply_to_conv: |
|
dim = self.lora_dim |
|
alpha = self.alpha |
|
|
|
if dim is None or dim == 0: |
|
continue |
|
|
|
|
|
lora = module_class(lora_name, child_module, self.multiplier, dim, alpha, unit) |
|
loras.append(lora) |
|
return loras |
|
|
|
self.text_encoder_loras = create_modules(False, text_encoder, DyLoRANetwork.TEXT_ENCODER_TARGET_REPLACE_MODULE) |
|
print(f"create LoRA for Text Encoder: {len(self.text_encoder_loras)} modules.") |
|
|
|
|
|
target_modules = DyLoRANetwork.UNET_TARGET_REPLACE_MODULE |
|
if modules_dim is not None or self.apply_to_conv: |
|
target_modules += DyLoRANetwork.UNET_TARGET_REPLACE_MODULE_CONV2D_3X3 |
|
|
|
self.unet_loras = create_modules(True, unet, target_modules) |
|
print(f"create LoRA for U-Net: {len(self.unet_loras)} modules.") |
|
|
|
def set_multiplier(self, multiplier): |
|
self.multiplier = multiplier |
|
for lora in self.text_encoder_loras + self.unet_loras: |
|
lora.multiplier = self.multiplier |
|
|
|
def load_weights(self, file): |
|
if os.path.splitext(file)[1] == ".safetensors": |
|
from safetensors.torch import load_file |
|
|
|
weights_sd = load_file(file) |
|
else: |
|
weights_sd = torch.load(file, map_location="cpu") |
|
|
|
info = self.load_state_dict(weights_sd, False) |
|
return info |
|
|
|
def apply_to(self, text_encoder, unet, apply_text_encoder=True, apply_unet=True): |
|
if apply_text_encoder: |
|
print("enable LoRA for text encoder") |
|
else: |
|
self.text_encoder_loras = [] |
|
|
|
if apply_unet: |
|
print("enable LoRA for U-Net") |
|
else: |
|
self.unet_loras = [] |
|
|
|
for lora in self.text_encoder_loras + self.unet_loras: |
|
lora.apply_to() |
|
self.add_module(lora.lora_name, lora) |
|
|
|
""" |
|
def merge_to(self, text_encoder, unet, weights_sd, dtype, device): |
|
apply_text_encoder = apply_unet = False |
|
for key in weights_sd.keys(): |
|
if key.startswith(DyLoRANetwork.LORA_PREFIX_TEXT_ENCODER): |
|
apply_text_encoder = True |
|
elif key.startswith(DyLoRANetwork.LORA_PREFIX_UNET): |
|
apply_unet = True |
|
|
|
if apply_text_encoder: |
|
print("enable LoRA for text encoder") |
|
else: |
|
self.text_encoder_loras = [] |
|
|
|
if apply_unet: |
|
print("enable LoRA for U-Net") |
|
else: |
|
self.unet_loras = [] |
|
|
|
for lora in self.text_encoder_loras + self.unet_loras: |
|
sd_for_lora = {} |
|
for key in weights_sd.keys(): |
|
if key.startswith(lora.lora_name): |
|
sd_for_lora[key[len(lora.lora_name) + 1 :]] = weights_sd[key] |
|
lora.merge_to(sd_for_lora, dtype, device) |
|
|
|
print(f"weights are merged") |
|
""" |
|
|
|
def prepare_optimizer_params(self, text_encoder_lr, unet_lr, default_lr): |
|
self.requires_grad_(True) |
|
all_params = [] |
|
|
|
def enumerate_params(loras): |
|
params = [] |
|
for lora in loras: |
|
params.extend(lora.parameters()) |
|
return params |
|
|
|
if self.text_encoder_loras: |
|
param_data = {"params": enumerate_params(self.text_encoder_loras)} |
|
if text_encoder_lr is not None: |
|
param_data["lr"] = text_encoder_lr |
|
all_params.append(param_data) |
|
|
|
if self.unet_loras: |
|
param_data = {"params": enumerate_params(self.unet_loras)} |
|
if unet_lr is not None: |
|
param_data["lr"] = unet_lr |
|
all_params.append(param_data) |
|
|
|
return all_params |
|
|
|
def enable_gradient_checkpointing(self): |
|
|
|
pass |
|
|
|
def prepare_grad_etc(self, text_encoder, unet): |
|
self.requires_grad_(True) |
|
|
|
def on_epoch_start(self, text_encoder, unet): |
|
self.train() |
|
|
|
def get_trainable_params(self): |
|
return self.parameters() |
|
|
|
def save_weights(self, file, dtype, metadata): |
|
if metadata is not None and len(metadata) == 0: |
|
metadata = None |
|
|
|
state_dict = self.state_dict() |
|
|
|
if dtype is not None: |
|
for key in list(state_dict.keys()): |
|
v = state_dict[key] |
|
v = v.detach().clone().to("cpu").to(dtype) |
|
state_dict[key] = v |
|
|
|
if os.path.splitext(file)[1] == ".safetensors": |
|
from safetensors.torch import save_file |
|
from library import train_util |
|
|
|
|
|
if metadata is None: |
|
metadata = {} |
|
model_hash, legacy_hash = train_util.precalculate_safetensors_hashes(state_dict, metadata) |
|
metadata["sshs_model_hash"] = model_hash |
|
metadata["sshs_legacy_hash"] = legacy_hash |
|
|
|
save_file(state_dict, file, metadata) |
|
else: |
|
torch.save(state_dict, file) |
|
|
|
|
|
def set_region(self, sub_prompt_index, is_last_network, mask): |
|
pass |
|
|
|
def set_current_generation(self, batch_size, num_sub_prompts, width, height, shared): |
|
pass |
|
|